Advertisement

Amino Acids

, Volume 35, Issue 2, pp 383–388 | Cite as

Improved prediction of subcellular location for apoptosis proteins by the dual-layer support vector machine

  • X.-B. Zhou
  • C. Chen
  • Z.-C. Li
  • X.-Y. Zou
Article

Summary.

Apoptosis proteins play an important role in the development and homeostasis of an organism. The accurate prediction of subcellular location for apoptosis proteins is very helpful for understanding the mechanism of apoptosis and their biological functions. However, most of the existing predictive methods are designed by utilizing a single classifier, which would limit the further improvement of their performances. In this paper, a novel predictive method, which is essentially a multi-classifier system, has been proposed by combing a dual-layer support vector machine (SVM) with multiple compositions including amino acid composition (AAC), dipeptide composition (DPC) and amphiphilic pseudo amino acid composition (Am-Pse-AAC). As a demonstration, the predictive performance of our method was evaluated on two datasets of apoptosis proteins, involving the standard dataset ZD98 generated by Zhou and Doctor, and a larger dataset ZW225 generated by Zhang et al. With the jackknife test, the overall accuracies of our method on the two datasets reach 94.90% and 88.44%, respectively. The promising results indicate that our method can be a complementary tool for the prediction of subcellular location.

Keywords: Subcellular location – Apoptosis protein – Dual-layer support vector machine – Amino acid composition – Dipeptide composition – Amphiphilic pseudo amino acid composition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angulo, C, Parra, X, Català, A 2003K-SVCR. A support vector machine for multi-class classificationNeurocomputing555777CrossRefGoogle Scholar
  2. Bairoch, A, Apweiler, R 2000The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000Nucleic Acids Res284548PubMedCrossRefGoogle Scholar
  3. Bhasin, M, Raghava, GPS 2004ESLpred: SVM-based method for subcellular localization of eukaryotic proteins using dipeptide composition and PSI-BLASTNucleic Acids Res32W414W419PubMedCrossRefGoogle Scholar
  4. Brown, MPS, Grundy, WN, Lin, D, Cristianini, N, Sugnet, CW, Furey, TS, Ares, M, Haussler, D 2000Knowledge-based analysis of microarray gene expression data by using support vector machinesProc Natl Acad Sci USA97262267PubMedCrossRefGoogle Scholar
  5. Bulashevska, A, Eils, R 2006Predicting protein subcellular locations using hierarchical ensemble of Bayesian classifiers based on Markov chainsBMC Bioinformatics7298PubMedCrossRefGoogle Scholar
  6. Chen, C, Tian, YX, Zou, XY, Cai, PX, Mo, JY 2006aUsing pseudo-amino acid composition and support vector machine to predict protein structural classJ Theor Biol243444448CrossRefGoogle Scholar
  7. Chen, C, Zhou, XB, Tian, YX, Zhou, XY, Cai, PX 2006bPredicting protein structural class with pseudo-amino acid composition and support vector machine fusion networkAnal Biochem357116121CrossRefGoogle Scholar
  8. Chen, J, Liu, H, Yang, J, Chou, KC 2007Prediction of linear B-cell epitopes using amino acid pair antigenicity scaleAmino Acids33423428PubMedCrossRefGoogle Scholar
  9. Chou, KC 2001Prediction of protein cellular attributes using pseudo-amino acid compositionProteins Struct Funct Genet43246255PubMedCrossRefGoogle Scholar
  10. Chou, KC 2004Review: structural bioinformatics and its impact to biomedical scienceCurr Med Chem1121052134PubMedGoogle Scholar
  11. Chou, KC 2005Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classesBioinformatics211019PubMedCrossRefGoogle Scholar
  12. Chou KC (2006) Frontiers in medicinal chemistry. In: Atta-ur-Rahman, Reitz AB (eds) Bentham Science Publishers, The Netherlands, pp 455–502Google Scholar
  13. Chou, KC, Cai, YD 2002Using functional domain composition and support vector machines for prediction of protein subcellular locationJ Biol Chem2274576545769CrossRefGoogle Scholar
  14. Chou, KC, Cai, YD 2003Prediction and classification of protein subcellular location – sequence-order effect and pseudo amino acid compositionJ Cell Biochem9012501260PubMedCrossRefGoogle Scholar
  15. Chou, KC, Cai, YD 2004aPredicting subcellular localization of proteins by hybridizing functional domain composition and pseudo-amino acid compositionJ Cell Biochem9111971203CrossRefGoogle Scholar
  16. Chou, KC, Cai, YD 2004bPrediction of protein subcellular locations by GO-FunD-PseAA predictorBiochem Biophys Res Commun32012361239CrossRefGoogle Scholar
  17. Chou, KC, Jones, D, Heinrikson, RL 1997Prediction of the tertiary structure and substrate binding site of caspase-8FEBS Lett4194954PubMedCrossRefGoogle Scholar
  18. Chou, KC, Shen, HB 2006aPredicting eukaryotic protein subcellular location by fusing optimized evidence-theoretic k-nearest neighbor classifiersJ Proteome Res518881897CrossRefGoogle Scholar
  19. Chou, KC, Shen, HB 2006bHum-PLoc: a novel ensemble classifier for predicting human protein subcellular localizationBiochem Biophys Res Commun347150157CrossRefGoogle Scholar
  20. Chou, KC, Shen, HB 2006cPredicting protein subcellular location by fusing multiple classifiersJ Cell Biochem99517527CrossRefGoogle Scholar
  21. Chou, KC, Shen, HB 2007aLarge-scale plant protein subcellular location predictionJ Cell Biochem100665678CrossRefGoogle Scholar
  22. Chou, KC, Shen, HB 2007bEuk-mPLoc: a fusion classifier for large-scale eukaryotic protein subcellular location prediction by incorporating multiple sitesJ Proteome Res617281734CrossRefGoogle Scholar
  23. Chou KC, Shen HB (2007c) Review: recent progresses in protein subcellular location prediction. Anal Biochem doi: 10.1016/j.ab.2007.07.006Google Scholar
  24. Chou, KC, Shen, HB 2007dSignal-CF: a subsite-coupled and window-fusing approach for predicting signal peptidesBiochem Biophys Res Commun357633640CrossRefGoogle Scholar
  25. Chou, KC, Shen, HB 2007eMemType-2L: a Web server for predicting membrane proteins and their types by incorporating evolution information through Pse-PSSMBiochem Biophys Res Commun360339345CrossRefGoogle Scholar
  26. Chou, KC, Tomasselli, AG, Heinrikson, RL 2000Prediction of the tertiary structure of a caspase-9/inhibitor complexFEBS Lett470249256PubMedCrossRefGoogle Scholar
  27. Chou, KC, Zhang, CT 1995Review: prediction of protein structural classesCrit Rev Biochem Mol30275349CrossRefGoogle Scholar
  28. Cortes, C, Vapnik, V 1995Support-vector networksMach Learn20273297Google Scholar
  29. Ding, CHQ, Dubchak, I 2001Multi-class protein fold recognition using support vector machines and neural networksBioinformatics17349358PubMedCrossRefGoogle Scholar
  30. Ding, YS, Zhang, TL, Chou, KC 2007Prediction of protein structure classes with pseudo amino acid composition and fuzzy support vector machine networkProtein Peptide Lett14811815CrossRefGoogle Scholar
  31. Du, P, Li, Y 2006Prediction of protein submitochondria locations by hybridizing pseudo-amino acid composition with various physicochemical features of segmented sequenceBMC Bioinformatics7518PubMedCrossRefGoogle Scholar
  32. Emanuelsson, O, Nielsen, H, Brunak, S, Heijne, G 2000Predicting subcellular localization of proteins based on their N-terminal amino acid sequenceJ Mol Biol30010051016PubMedCrossRefGoogle Scholar
  33. Feng, ZP 2002An overview on predicting the subcellular location of a proteinIn Silico Biol2291303PubMedGoogle Scholar
  34. Garg, A, Bhasin, M, Raghava, GPS 2005Support vector machine-based method for subcellular location of human proteins using amino acid compositions, their order and similarity searchJ Biol Chem2801442714432PubMedCrossRefGoogle Scholar
  35. Gao, Y, Shao, SH, Xiao, X, Ding, YS, Huang, YS, Huang, ZD, Chou, KC 2005Using pseudo amino acid composition to predict protein subcellular location: approached with Lyapunov index, bessel function, and Chebyshev filterAmino Acids28373376PubMedCrossRefGoogle Scholar
  36. Guo, YZ, Li, M, Lu, M, Wen, Z, Wang, K, Li, G, Wu, J 2006Classifying G protein-coupled receptors and nuclear receptors based on protein power spectrum from fast Fourier transformAmino Acids30397402PubMedCrossRefGoogle Scholar
  37. Hopp, TP, Woods, KR 1981Prediction of protein antigenic determinants from amino acid sequencesProc Natl Acad Sci USA7838243828PubMedCrossRefGoogle Scholar
  38. Hua, SJ, Sun, ZR 2001Support vector machine approach for protein subcellular location predictionBioinformatics17721728PubMedCrossRefGoogle Scholar
  39. Huang, Y, Li, Y 2004Prediction of protein subcellular locations using fuzzy k-NN methodBioinformatics202128PubMedCrossRefGoogle Scholar
  40. Lin, H, Li, QZ 2007aPredicting conotoxin superfamily and family by using pseudo amino acid composition and modified Mahalanobis discriminantBiochem Biophys Res Commun354548551CrossRefGoogle Scholar
  41. Lin, H, Li, QZ 2007bUsing pseudo amino acid composition to predict protein structural class: approached by incorporating 400 dipeptide componentsJ Comput Chem2814631466CrossRefGoogle Scholar
  42. Liu, DQ, Liu, H, Shen, HB, Yang, J, Chou, KC 2007Predicting secretory protein signal sequence cleavage sites by fusing the marks of global alignmentsAmino Acids32493496PubMedCrossRefGoogle Scholar
  43. Matthews, BW 1975Comparison of predicted and observed secondary structure of T4 phage lysozymeBiochim Biophys Acta405442451PubMedGoogle Scholar
  44. Mondal, S, Bhavna, R, Mohan Babu, R, Ramakumar, S 2006Pseudo amino acid composition and multi-class support vector machines approach for conotoxin superfamily classificationJ Theor Biol243252260PubMedCrossRefGoogle Scholar
  45. Nakai, K, Kanehisa, M 1992A knowledge base for predicting protein localization sites in eukaryotic cellsGenomics14897911PubMedCrossRefGoogle Scholar
  46. Niu, B, Cai, YD, Lu, WC, Zheng, GY, Chou, KC 2006Predicting protein structural class with AdaBoost learnerProtein Peptide Lett13489492CrossRefGoogle Scholar
  47. Park, KJ, Kanehisa, M 2003Prediction of protein subcellular locations by support vector machines using compositions of amino acids and amino acid pairsBioinformatics1916561663PubMedCrossRefGoogle Scholar
  48. Peter, ME, Heufelder, AE, Hengartner, MO 1997Advances in apoptosis researchProc Natl Acad Sci USA941273612737PubMedCrossRefGoogle Scholar
  49. Reinhardt, A, Hubbard, T 1998Using neural networks for prediction of the subcellular location of proteinsNucleic Acids Res2622302236PubMedCrossRefGoogle Scholar
  50. Shen, HB, Chou, KC 2007aUsing ensemble classifier to identify membrane protein typesAmino Acids32483488CrossRefGoogle Scholar
  51. Shen, HB, Chou, KC 2007bHum-mPLoc: an ensemble classifier for large-scale human protein subcellular location prediction by incorporating samples with multiple sitesBiochem Biophys Res Commun35510061011CrossRefGoogle Scholar
  52. Shen, HB, Chou, KC 2007cVirus-PLoc: a fusion classifier for predicting the subcellular localization of viral proteins within host and virus-infected cellsBiopolymers85233240CrossRefGoogle Scholar
  53. Shen, HB, Yang, J, Chou, KC 2007aEuk-PLoc: an ensemble classifier for large-scale eukaryotic protein subcellular location predictionAmino Acids335767CrossRefGoogle Scholar
  54. Shen, HB, Yang, J, Chou, KC 2007bReview: methodology development for predicting subcellular localization and other attributes of proteinsExpert Rev Proteomic4453463CrossRefGoogle Scholar
  55. Shi, JY, Zhang, SW, Pan, Q, Cheng, YM, Xie, J 2007Prediction of protein subcellular localization by support vector machines using multi-scale energy and pseudo amino acid compositionAmino Acids336974PubMedCrossRefGoogle Scholar
  56. Sun, XD, Huang, RB 2006Prediction of protein structural classes using support vector machinesAmino Acids30469475PubMedCrossRefGoogle Scholar
  57. Tanford, C 1962Contribution of hydrophobic interactions to the stability of the globular conformation of proteinsJ Am Chem Soc8442404247CrossRefGoogle Scholar
  58. Wang M, Yang J, Chou KC (2005) Using string kernel to predict signal peptide cleavage site based on subsite coupling model. Amino Acids (Erratum, ibid. 2005, 29: 301) 28, 395–402Google Scholar
  59. Wen, Z, Li, M, Li, Y, Guo, Y, Wang, K 2007Delaunay triangulation with partial least squares projection to latent structures: a model for G-protein coupled receptors classification and fast structure recognitionAmino Acids32277283PubMedCrossRefGoogle Scholar
  60. Xiao, X, Shao, S, Ding, Y, Huang, Z, Huang, Y, Chou, KC 2005Using complexity measure factor to predict protein subcellular locationAmino Acids285761PubMedCrossRefGoogle Scholar
  61. Xiao, X, Shao, SH, Ding, YS, Huang, ZD, Chou, KC 2006Using cellular automata images and pseudo amino acid composition to predict protein subcellular locationAmino Acids304954PubMedCrossRefGoogle Scholar
  62. Yang, ZR 2004Biological applications of support vector machinesBrief Bioinform5328338PubMedCrossRefGoogle Scholar
  63. Yu, CS, Lin, CJ, Huwang, JK 2004Predicting subcellular localization of proteins for Gram-negative bacteria by support vector machines based on n-peptide compositionsProtein Sci1314021406PubMedCrossRefGoogle Scholar
  64. Zhang, SW, Pan, Q, Zhang, HC, Shao, ZC, Shi, JY 2006Prediction protein homo-oligomer types by pseudo amino acid composition: approached with an improved feature extraction and naive Bayes feature fusionAmino Acids30461468PubMedCrossRefGoogle Scholar
  65. Zhang TL, Ding YS (2007) Using pseudo amino acid composition and binary-tree support vector machines to predict protein structural classes. Amino Acids, doi: 10.1007/s00726-007-0496-1Google Scholar
  66. Zhang, ZH, Wang, ZH, Wang, YX 2006aPrediction of the subcellular location of apoptosis-related proteins with encoding based on grouped weight for protein sequenceActa Biophys Sin22275282Google Scholar
  67. Zhang, ZH, Wang, ZH, Zhang, ZR, Wang, YX 2006bA novel method for apoptosis protein subcellular localization prediction combing encoding based on grouped weight and support vector machineFEBS Lett58061696174CrossRefGoogle Scholar
  68. Zhou, GP 1998An intriguing controversy over protein structural class predictionJ Protein Chem17729738PubMedCrossRefGoogle Scholar
  69. Zhou, GP, Assa-Munt, N 2001Some insights into protein structural class predictionProteins Struct Func Genet445759CrossRefGoogle Scholar
  70. Zhou, GP, Doctor, K 2003Subcellular location prediction of apoptosis proteinsProteins Struct Func Genet504448CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • X.-B. Zhou
    • 1
  • C. Chen
    • 1
  • Z.-C. Li
    • 1
  • X.-Y. Zou
    • 1
  1. 1.School of Chemistry and Chemical EngineeringSun Yat-Sen UniversityGuangzhouChina

Personalised recommendations