Advertisement

Amino Acids

, Volume 35, Issue 2, pp 251–256 | Cite as

DNA cleavage function of seryl-histidine dipeptide and its application

  • Y. Ma
  • X. Chen
  • M. Sun
  • R. Wan
  • C. Zhu
  • Y. Li
  • Y. Zhao
Review Article

Summary.

The double-stranded DNA or circular plasmid DNA can be cleaved by the Ser-His dipeptide by hydrolysis of the DNA-phospho-diester bond. The proper sequential order of the amino acids serine and histidine is apparently crucial in its unique cleavage activity as compared to the other di- or tri-peptides containing one of these amino acids. An inverted sequence of this dipeptide to a His-Ser linkage renders the peptide ineffective in the cleavage of DNA. In addition to the DNA cleavage function, Ser-His is also capable of cleaving other molecules, e.g., proteins, esters and RNAs. The cooperative actions of the hydroxyl group and the basic groups in the serine and histidine or related amino acids can be found in contemporary enzymes, such as DNase, serine proteases, lipases, esterases, chymotrypsin, trypsin, and elastase, etc. The Ser-His and related oligopeptides might have played important roles in the evolution of enzyme functions.

Keywords: Seryl-histidine dipeptide – DNA cleavage function – Evolution of enzymes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Åström, H, Strömberg, R 2004Synthesis of New OBAN’s and further studied on positioning of the catalytic groupOrg Biomol Chem219011907PubMedCrossRefGoogle Scholar
  2. Beloglazova, NG, Fabani, MM, Zenkova, MA, Bichenkova, EV, Polushin, NN, Sil’nikov, VV, Douglas, KT, Vlassov, VV 2004Sequence-specific artificial ribonucleases. I. Bis-imidazole-containing oligonucleotide conjugates prepared using precursor-based strategyNucleic Acids Res1338872897CrossRefGoogle Scholar
  3. Boseggia, E, Gatos, M, Lucatello, L, Mancin, F, Moro, S, Palumbo, M, Sissi, C, Tecilla, P, Tonellato, U, Zagotto, G 2004Toward efficient Zn(II)-based artificial nucleasesJ Am Chem Soc12645434549PubMedCrossRefGoogle Scholar
  4. Brady, L, Brzozowski, AM, Derewenda, ZS, Dodson, E, Dodson, G, Tolley, S, Turkenburg, JP, Christiansen, L, Huge-Jensen, B, Norskov, L, Thim, L, Menge, U 1990A serine protease triad forms the catalytic centre of a triacylglycerol lipaseNature343767770PubMedCrossRefGoogle Scholar
  5. Breslow, R 1991How do imidazole groups catalyze the cleavage of RNA in enzyme models and in enzymes? Evidence from “negative catalysis”Acc Chem Res24317324CrossRefGoogle Scholar
  6. Brzyska, M, Bacia, A, Elbaum, D 2001Oxidative and hydrolytic properties of β-amyloidEur J Biochem26834433454PubMedCrossRefGoogle Scholar
  7. Carter, P, Wells, JA 1988Dissecting the catalytic triad of a serine proteaseNature332564568PubMedCrossRefGoogle Scholar
  8. Catry, MA, Madder, A 2007Synthesis of functionalized nucleosides for incorporation into nucleic acid-based serine protease mimicsMolecules12114129PubMedGoogle Scholar
  9. Contreras, JA, Karlsson, M, Osterlund, T, Laurell, H, Svensson, A, Holm, C 1996Hormone-sensitive lipase is structurally related to acetylcholinesterase, bile salt-stimulated lipase, and several fungal lipases – building of a three-dimensional model for the catalytic domain of hormone-sensitive lipaseJ Biol Chem2713142631430PubMedCrossRefGoogle Scholar
  10. Corey, DR, Willett, WS, Coombs, GS, Craik, CS 1995Trypsin specificity increased through substrate-assisted catalysisBiochemistry341152111527PubMedCrossRefGoogle Scholar
  11. Cowan, JA 2001Chemical nucleasesCurr Opin Chem Biol5634642PubMedCrossRefGoogle Scholar
  12. Fox, KR, Waring, MJ 2001High resolution footprinting studies of drug-DNA complexes using chemical and enzymatic probesMethods Enzymol340412430PubMedCrossRefGoogle Scholar
  13. Gnaccarini, C, Peter, S, Scheffer, U, Vonhoff, S, Klussmann, S, Göbel, MW 2006Site-specific cleavage of RNAby a metal-free artificial nuclease attached to antisense oligonucleotidesJ Am Chem Soc12880638067PubMedCrossRefGoogle Scholar
  14. Joyce, GF 2007A glimpse of biology’s first enzymeScience31515071508PubMedCrossRefGoogle Scholar
  15. Joyce, GF, Orgel, LE 1993Prospects for understanding the origin of the RNA worldGesteland, RFAtkins, JF eds. The RNA worldCold Spring Harbor Laboratory PressNew York126Google Scholar
  16. Kane, PM, Yamashiro, CT, Wolczyk, DF, Neff, N, Goebl, M, Stevens, TH 1990Protein splicing converts the yeast TFP1 gene product to the 69-kD subunit of the vacuolar H(+)-adenosine triphosphataseScience250651657PubMedCrossRefGoogle Scholar
  17. Kuhn, H, Hu, Y, Frank-Kamenetskii, MD, Demidov, VV 2003Artifical site-specific DNA-nicking system based on common restriction enzymes assisted by PNA openersBiochemistry4249854992PubMedCrossRefGoogle Scholar
  18. Li, XH, Ma, Y, Chen, Y, Zhao, YF 1997RNA cleavage by N-phosphoryl serine in histidine bufferChin Chem Lett85356Google Scholar
  19. Li, Y, Zhao, YF, Hatfield, S, Wan, R, Zhu, Q, Li, X, McMills, M, Ma, Y, Li, J, Brown, KL, He, C, Liu, F, Chen, XZ 2000Dipeptide seryl-histidine and related oligopeptides cleave DNA, protein, and a carboxyl esterBioorg Med Chem826752680PubMedCrossRefGoogle Scholar
  20. Li, Y, Hatfield, S, Li, J, McMills, M, Zhao, Y, Chen, X 2002Seryl-histidine as an alternative DNA nicking agent in nick translation yields superior DNA probes and hybridizationBioorg Med Chem10667673PubMedCrossRefGoogle Scholar
  21. Lipscomb, WN, Strater, N 1996Recent advances in zinc enzymologyChem Rev9623752433PubMedCrossRefGoogle Scholar
  22. Liu, X, Cheng, C, Zhu, C, Zhao, Y 2005Theoretical study on the binding of L/D Ser/histamine amide with 5′-TpTpdC-3′J Mol Struct723101104Google Scholar
  23. Liu, XQ 2000Protein-splicing intein: genetic mobility, origin, and evolutionAnnu Rev Genet346176PubMedCrossRefGoogle Scholar
  24. Ma Y (1996) Ph.D. Dissertation, Department of Chemistry, Tsinghua UniversityGoogle Scholar
  25. Madder, A, Li, L, Muynck, HD, Farcy, N, Van Haver, D, Fant, F, Vanhoenacker, G, Sandra, P, Davis, AP, De Clercq, PJ 2002J Comb Chem4552562PubMedCrossRefGoogle Scholar
  26. Nomura, A, Sugiura, Y 2004Sequence-selective and hydrolytic cleavage of DNA by zinc finger mutantsJ Am Chem Soc1261537415375PubMedCrossRefGoogle Scholar
  27. Perler, FB, Davis, FQ, Dean, GE, Gimble, FS, Jack, WE, Neff, N, Noren, CJ, Thorner, J, Belfort, M 1994Nucleic Acids Res2211251127PubMedCrossRefGoogle Scholar
  28. Reddy, PR, Rao, KS, Mohan, SK 2004Copper(II) complexes containing N,N-donor ligands and dipeptides act as hydrolytic DNA-cleavage agentsChem Biodiv1839851CrossRefGoogle Scholar
  29. Roth, A, Breaker, RR 1998An amino acid as a cofactor for a catalytic polynucleotideProc Natl Acad Sci USA9560276031PubMedCrossRefGoogle Scholar
  30. Santoro, SW, Joyce, GF, Sakthivel, K, Gramatikova, S, Barbas, CF,III 2000RNA cleavage by a DNA enzyme with extended chemical functionalityJ Am Chem Soc12224332439PubMedCrossRefGoogle Scholar
  31. Schrag, JD, Li, Y, Wu, S, Cygler, M 1991Ser-His-Glu triad forms the catalytic site of the lipase from Geotrichum candidumNature351761764PubMedCrossRefGoogle Scholar
  32. Sigman, DS, Chen, CHB 1990Chemical nucleases: new reagents in molecular biologyAnnu Rev Biochem59207236PubMedCrossRefGoogle Scholar
  33. Steitz, TA, Shulman, RG 1982Crystallographic and NMR studies of the serine proteasesAnnu Rev Biophys Bioeng11419444PubMedCrossRefGoogle Scholar
  34. Sun, M, Zhu, CJ, Tan, B, Jin, Y, Zhao, YF 2003Molecular modeling of diastereoisomeric aggregates of L/D ser/histamine amide with 5′-TpTpdC-3′J Mol Modeling98487CrossRefGoogle Scholar
  35. Sun, M, Ma, Y, Ji, SH, Liu, H, Zhao, YF 2004Molecular modeling on DNA cleavage activity of seryl-histidine and related dipeptideBioorg Med Chem Lett1437113714PubMedCrossRefGoogle Scholar
  36. Sussman, JL, Harel, M, Frolow, F, Oefner, C, Goldman, A, Toker, L, Silman, I 1991Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding proteinScience253872879PubMedCrossRefGoogle Scholar
  37. Wan R (2000a) Ph.D. Dissertation, Department of Chemistry, Tsinghua UniversityGoogle Scholar
  38. Wan, R, Wang, N, Zhao, G, Zhao, YF 2000bSeryl-histidine dipeptide side chains effects on its DNA cleavage reactionChem J Chin Univ2118641866Google Scholar
  39. Xu, MQ, Thomas, CE,Jr 2005Recent advances in protein splicing: manipulating proteins in vitro and in vivoCurr Opin Biotech16440446PubMedCrossRefGoogle Scholar
  40. Yang, P, Ren, R, Guo, M, Song, A, Meng, X, Yuan, C, Zhou, X, Chen, H, Xiong, Z, Gao, X 2004Double-strand hydrolysis of DNA by a magnesium(II) complex with diethylenetriamineJ Biol Inorg Chem9495506PubMedCrossRefGoogle Scholar
  41. Zhao, Z, Peacock, JG, Gubler, DA, Peterson, MA 2005Photoinduced Bergman cycloaromatization of imidazole-fused enediyneTetrahedron Lett4613731375CrossRefGoogle Scholar
  42. Zhong, RG, Zhao, LJ, Zhao, YF 2004A QM-MM study on DNA cleavage by seryl-histidine dipeptideActa Chim Sinica6224442446Google Scholar
  43. Zhu, CJ, Lu, Y, Du, HL, Jiang, YY, Zhao, YF 2004A pair of new enantiomeric amides with DNA cleaving functionChem J Chin Univ2510651068Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Y. Ma
    • 1
  • X. Chen
    • 2
  • M. Sun
    • 1
  • R. Wan
    • 1
  • C. Zhu
    • 1
  • Y. Li
    • 1
  • Y. Zhao
    • 1
    • 3
  1. 1.The Key Laboratory of Bioorganic Phosphorus and Chemical Biology (Ministry of Education), Department of ChemistryTsinghua UniversityBeijingChina
  2. 2.Departments of Chemistry and Biochemistry and Biomedical ScienceOhio UniversityAthensU.S.A.
  3. 3.The Key Laboratory for Chemical Biology of Fujian Province, Department of ChemistryXiamen UniversityXiamenChina

Personalised recommendations