Amino Acids

, Volume 35, Issue 2, pp 267–274 | Cite as

Functional proteomics to identify critical proteins in signal transduction pathways

  • G.-R. Yan
  • Q.-Y. He
Review Article


Reversible protein phosphorylation plays a crucial role in the regulation of signaling pathways that control various biological responses, such as cell growth, differentiation, invasion, metastasis and apoptosis. Proteomics is a powerful research approach for fully monitoring global molecular responses to the activation of signal transduction pathways. Identification of different phosphoproteins and their phosphorylation sites by functional proteomics provides informational insights into signaling pathways triggered by all kinds of factors. This review summarizes how functional proteomics can be used to answer specific questions related to signal transduction systems of interest. By examining our own example on identifying the novel phosphoproteins in signaling pathways activated by EB virus-encoded latent membrane protein 1 (LMP1), we demonstrated a functional proteomic strategy to elucidate the molecular activity of phosphorylated annexin A2 in LMP1 signaling pathway. Functional profiling of signaling pathways is promising for the identification of novel targets for drug discovery and for the understanding of disease pathogenesis.

Keywords: Proteomics – Phosphoproteomics – Signal transduction – Phosphorylation 



immobilized metal affinity chromatography


latent membrane protein 1


platelet-derived growth factor


protein kinase C


phosphate metal affinity chromatography


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atkinson, PG, Coope, HJ, Rowe, M, Ley, SC 2003Latent membrane protein 1 of Epstein-Barr virus stimulates processing of NF-kappa B2 p100 to p52J Biol Chem2785113451142PubMedCrossRefGoogle Scholar
  2. Beausoleil, SA, Jedrychowski, M, Schwartz, D, Elias, JE, Villen, J, Li, J, Cohn, MA, Cantley, LC, Gygi, SP 2004Large-scale characterization of HeLa cell nuclear phosphoproteinsProc Natl Acad Sci USA1011213012135PubMedCrossRefGoogle Scholar
  3. Blagoev, B, Kratchmarova, I, Ong, SE, Nielsen, M, Foster, LJ, Mann, MA 2003Proteomics strategy to elucidate functional protein-protein interactions applied to EGF signalingNat Biotechnol21315318PubMedCrossRefGoogle Scholar
  4. Brill, LM, Salomon, AR, Ficarro, SB, Mukherji, M, Stettler-Gill, M, Peters, EC 2004Robust phosphoproteomic profiling of tyrosine phosphorylation sites from human T cells using immobilized metal affinity chromatography and tandem mass spectrometryAnal Chem7627632772PubMedCrossRefGoogle Scholar
  5. Cans, C, Mangano, R, Barila, D, Neubauer, G, Superti-Furga, G 2000Nuclear tyrosine phosphorylation: the beginning of a mapBiochem Pharmacol6012031215PubMedCrossRefGoogle Scholar
  6. Cao, P, Stults, JT 2000Mapping the phosphorylation sites of proteins using on-line immobilized metal affinity chromatography/capillary electrophoresis/electrospray ionization multiple stage tandem mass spectrometryRapid Commun Mass Spectrom1416001606PubMedCrossRefGoogle Scholar
  7. Conrads, TP, Issaq, HJ, Veenstra, TD 2002New tools for quantitative phosphoproteome analysisBiochem Biophys Res Commun290885890PubMedCrossRefGoogle Scholar
  8. de Graauw, M, Hensbergen, P, van de Water, B 2006Phospho-proteomic analysis of cellular signalingElectrophoresis2726762686PubMedCrossRefGoogle Scholar
  9. Dorion, S, Berube, J, Huot, J, Landry, J 1999A short lived protein involved in the heat shock sensing mechanism responsible for stress-activated protein kinase 2 (SAPK2/p38) activationJ Biol Chem2743759137597PubMedCrossRefGoogle Scholar
  10. Drouva, SV, Poulin, B, Manceau, V, Sobel, A 1998Luteinizing hormone-releasing hormone-signal transduction and stathmin phosphorylation in the gonadotrope alphaT3-1 cell lineEndocrinology13922352239PubMedCrossRefGoogle Scholar
  11. Eliopoulos, AG, Gallagher, NJ, Blake, SM, Dawson, CW, Young, LS 1999Activation of the p38 mitogen-activated protein kinase pathway by Epstein-Barr virus-encoded latent membrane protein 1 coregulates interleukin-6 and interleukin-8 productionJ Biol Chem2741608516096PubMedCrossRefGoogle Scholar
  12. Ficarro, SB, McCleland, ML, Stukenberg, PT, Burke, DJ, Ross, MM, Shabanowitz, J, Hunt, DF, White, FM 2002Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae Nat Biotechnol20301305PubMedCrossRefGoogle Scholar
  13. Gires, O, Kohlhuber, F, Kilger, E, Baumann, M, Kieser, A, Kaiser, C, Zeidler, R, Scheffer, B, Ueffing, M, Hammerschmidt, W 1999Latent membrane protein 1 of Epstein-Barr virus interacts with JAK3 and activates STAT proteinsEMBO J1830643073PubMedCrossRefGoogle Scholar
  14. Gould, KL, Woodgett, JR, Isacke, CM, Hunter, T 1986The protein-tyrosine kinase substrate p36 is also a substrate for protein kinase C in vitro and in vivoMol Cell Biol627382744PubMedGoogle Scholar
  15. Grein, S, Pyerin, W 1999BTF3 is a potential new substrate of protein kinase CK2Mol Cell Biochem191121128PubMedCrossRefGoogle Scholar
  16. Gruhler, A, Olsen, JV, Mohammed, S, Mortensen, P, Faergeman, NJ, Mann, M, Jensen, ON 2005Quantitative phosphoproteomics applied to the yeast pheromone signaling pathwayMol Cell Proteomics4310327PubMedCrossRefGoogle Scholar
  17. Haystead, CM, Gregory, P, Sturgill, TW, Haystead, TA 1993Gamma-phosphate-linked ATP-sepharose for the affinity purification of protein kinases. Rapid purification to homogeneity of skeletal muscle mitogen-activated protein kinase kinaseEur J Biochem214459467PubMedCrossRefGoogle Scholar
  18. Hinsby, AM, Olsen, JV, Bennett, KL, Mann, M 2003Signaling initiated by overexpression of the fibroblast growth factor receptor-1 investigated by mass spectrometryMol Cell Proteomics22936PubMedCrossRefGoogle Scholar
  19. Hirodshi T (2003) The 42nd Annual Conference of the Japanese Society for Medical and Biological Engineering, June 3Google Scholar
  20. Hu, VW, Heikka, DS 2000Radiolabeling revisited: metabolic labeling with (35)S-methionine inhibits cell cycle progression, proliferation, and survivalFASEB J14448454PubMedGoogle Scholar
  21. Hu, VW, Heikka, DS, Dieffenbach, PB, Ha, L 2001Metabolic radiolabeling: experimental tool or Trojan horse? (35)S-Methionine induces DNA fragmentation and p53-dependent ROS productionFASEB J1515621568PubMedCrossRefGoogle Scholar
  22. Hunter, T 2000Signaling – 2000 and beyondCell100113127PubMedCrossRefGoogle Scholar
  23. Immler, D, Gremm, D, Kirsch, D, Spengler, B, Presek, P, Meyer, HE 1998Identification of phosphorylated proteins from thrombin-activated human platelets isolated by two-dimensional gel electrophoresis by electrospray ionization-tandem mass spectrometry (ESI-MS/MS) and liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS)Electrophoresis1910151023PubMedCrossRefGoogle Scholar
  24. Irish, JM, Hovland, R, Krutzik, PO, Perez, OD, Bruserud, O, Gjertsen, BT, Nolan, GP 2004Single cell profiling of potentiated phospho-protein networks in cancer cellsCell118217228PubMedCrossRefGoogle Scholar
  25. Johnsson, N, Nguyen Van, P, Soling, HD, Weber, K 1986Functionally distinct serine phosphorylation sites of p36, the cellular substrate of retroviral protein kinase; differential inhibition of reassociation with p11EMBO J534553460PubMedGoogle Scholar
  26. Katoh, N 2002Inhibition by melittin of phosphorylation by protein kinase C of annexin I from cow mammary glandJ Vet Med Sci64779783PubMedCrossRefGoogle Scholar
  27. Kenneth A (2002) The 8th International Conference on Malignant Lymphoma, Lugano, Switzerland, June 12Google Scholar
  28. Kim, HJ, Song, EJ, Lee, KJ 2002Proteomic analysis of protein phosphorylations in heat shock response and thermotoleranceJ Biol Chem2772319323207PubMedCrossRefGoogle Scholar
  29. Krutzik, PO, Irish, JM, Nolan, GP, Perez, OD 2004Analysis of protein phosphorylation and cellular signaling events by flow cytometry: techniques and clinical applicationsClin Immunol110206221PubMedCrossRefGoogle Scholar
  30. Larsen, MR, Sorensen, GL, Fey, SJ, Larsen, PM, Roepstorff, P 2001Phospho-proteomics: evaluation of the use of enzymatic de-phosphorylation and differential mass spectrometric peptide mass mapping for site specific phosphorylation assignment in proteins separated by gel electrophoresisProteomics1223238PubMedCrossRefGoogle Scholar
  31. Lewis, TS, Hunt, JB, Aveline, LD, Jonscher, KR, Louie, DF, Yeh, JM, Nahreini, TS, Resing, KA, Ahn, NG 2000Identification of novel MAP kinase pathway signaling targets by functional proteomics and mass spectrometryMol Cell613431354PubMedCrossRefGoogle Scholar
  32. Lim, YP, Wong, CY, Ooi, LL, Druker, BJ, Epstein, RJ 2004Selective tyrosine hyperphosphorylation of cytoskeletal and stress proteins in primary human breast cancers: implications for adjuvant use of kinase-inhibitory drugsClin Cancer Res1039803987PubMedCrossRefGoogle Scholar
  33. Luftig, M, Prinarakis, E, Yasui, T, Tsichritzis, T, Cahir-McFarland, E, Inoue, J, Nakano, H, Mak, TW, Yeh, WC, Li, X, Akira, S, Suzuki, N, Suzuki, S, Mosialos, G, Kieff, E 2003Epstein-Barr virus latent membrane protein 1 activation of NF-kappaB through IRAK1 and TRAF6Proc Natl Acad Sci USA1001559515600PubMedCrossRefGoogle Scholar
  34. MacDonald, JA, Walker, LA, Nakamoto, RK, Gorenne, I, Somlyo, AV, Somlyo, AP, Haystead, TA 2000Phosphorylation of telokin by cyclic nucleotide kinases and the identification of in vivo phosphorylation sites in smooth muscleFEBS Lett4798388PubMedCrossRefGoogle Scholar
  35. MacDonald, JA, Borman, MA, Muranyi, A, Somlyo, AV, Hartshorne, DJ, Haystead, TA 2001Identification of the endogenous smooth muscle myosin phosphatase-associated kinaseProc Natl Acad Sci USA9824192424PubMedCrossRefGoogle Scholar
  36. Machida, K, Mayer, BJ, Nollau, P 2003Profiling the global tyrosine phosphorylation stateMol Cell Proteomics2215233PubMedGoogle Scholar
  37. Mann, M, Ong, SE, Gronborg, M, Steen, H, Jensen, ON, Pandey, A 2002Analysis of protein phosphorylation using mass spectrometry: deciphering the phosphoproteomeTrends Biotechnol20261268PubMedCrossRefGoogle Scholar
  38. Mizuno, T, Mizushima, S 1990Signal transduction and gene regulation through the phosphorylation of two regulatory components: the molecular basis for the osmotic regulation of the porin genesMol Microbiol410771082PubMedCrossRefGoogle Scholar
  39. Oda, Y, Nagasu, T, Chait, BT 2001Enrichment analysis of phosphorylated proteins as a tool for probing the phosphoproteomeNat Biotechnol19379382PubMedCrossRefGoogle Scholar
  40. Paine, E, Palmantier, R, Akiyama, SK, Olden, K, Roberts, JD 2000Arachidonic acid activates mitogen-activated protein (MAP) kinase-activated protein kinase 2 and mediates adhesion of a human breast carcinoma cell line to collagen type IV through a p38 MAP kinase-dependent pathwayJ Biol Chem2751128411290PubMedCrossRefGoogle Scholar
  41. Pandey, A, Podtelejnikov, AV, Blagoev, B, Bustelo, XR, Mann, M, Lodish, HF 2000Analysis of receptor signaling pathways by mass spectrometry: identification of vav-2 as a substrate of the epidermal and platelet-derived growth factor receptorsProc Natl Acad Sci USA97179184PubMedCrossRefGoogle Scholar
  42. Park, KJ, Gaynor, RB, Kwak, YT 2003Heat shock protein 27 association with the Ikappa B kinase complex regulates tumor necrosis factor alpha-induced NF-kappa B activationJ Biol Chem2783527235278PubMedCrossRefGoogle Scholar
  43. Posewitz, MC, Tempst, P 1999Immobilized gallium(III) affinity chromatography of phosphopeptidesAnal Chem7128832892PubMedCrossRefGoogle Scholar
  44. Radke, S, Austermann, J, Russo-Marie, F, Gerke, V, Rescher, U 2004Specific association of annexin 1 with plasma membrane-resident and internalized EGF receptors mediated through the protein core domainFEBS Lett5789598PubMedCrossRefGoogle Scholar
  45. Raska, CS, Parker, CE, Dominski, Z, Marzluff, WF, Glish, GL, Pope, RM, Borchers, CH 2002Direct MALDI-MS/MS of phosphopeptides affinity-bound to immobilized metal ion affinity chromatography beadsAnal Chem7434293433PubMedCrossRefGoogle Scholar
  46. Roberts, ML, Cooper, NR 1998Activation of a ras-MAPK-dependent pathway by Epstein-Barr virus latent membrane protein 1 is essential for cellular transformationVirology2409399PubMedCrossRefGoogle Scholar
  47. Saito, N, Courtois, G, Chiba, A, Yamamoto, N, Nitta, T, Hironaka, N, Rowe, M, Yamamoto, N, Yamaoka, S 2003Two carboxyl-terminal activation regions of Epstein-Barr virus latent membrane protein 1 activate NF-kappaB through distinct signaling pathways in fibroblast cell linesJ Biol Chem2784656546575PubMedCrossRefGoogle Scholar
  48. Salomon, AR, Ficarro, SB, Brill, LM, Brinker, A, Phung, QT, Ericson, C, Sauer, K, Brock, A, Horn, DM, Schultz, PG, Peters, EC 2003Profiling of tyrosine phosphorylation pathways in human cells using mass spectrometryProc Natl Acad Sci USA100443448PubMedCrossRefGoogle Scholar
  49. Satoh, J, Kim, SU 1995Cytokines and growth factors induce HSP27 phosphorylation in human astrocytesJ Neuropathol Exp Neurol54504512PubMedCrossRefGoogle Scholar
  50. Sobel, A 1991Stathmin: a relay phosphoprotein for multiple signal transduction?Trends Biochem Sci16301305PubMedCrossRefGoogle Scholar
  51. Soskic, V, Gorlach, M, Poznanovic, S, Boehmer, FD, Godovac-Zimmermann, J 1999Functional proteomics analysis of signal transduction pathways of the platelet-derived growth factor beta receptorBiochemistry3817571764PubMedCrossRefGoogle Scholar
  52. Stancato, LF, Petricoin, EF 2001Fingerprinting of signal transduction pathways using a combination of anti-phosphotyrosine immunoprecipitations and two-dimensional polyacrylamide gel electrophoresisElectrophoresis2221202124PubMedCrossRefGoogle Scholar
  53. Steen, H, Kuster, B, Fernandez, M, Pandey, A, Mann, M 2002Tyrosine phosphorylation mapping of the epidermal growth factor receptor signaling pathwayJ Biol Chem27710311039PubMedCrossRefGoogle Scholar
  54. Steinberg, TH, Agnew, BJ, Gee, KR, Leung, WY, Goodman, T, Schulenberg, B, Hendrickson, J, Beechem, JM, Haugland, RP, Patton, WF 2003Global quantitative phosphoprotein analysis using multiplexed proteomics technologyProteomics311281144PubMedCrossRefGoogle Scholar
  55. Stensballe, A, Andersen, S, Jensen, ON 2001Characterization of phosphoproteins from electrophoretic gels by nanoscale Fe(III) affinity chromatography with off-line mass spectrometry analysisProteomics1207222PubMedCrossRefGoogle Scholar
  56. Xhou, W, Merrick, BA, Khaledi, MG, Tomer, KB 2000Detection and sequencing of phosphopeptides affinity bound to immobilized metal ion beads by matrix-assisted laser desorption/ionization mass spectrometryJ Am Soc Mass Spectrom11273282CrossRefGoogle Scholar
  57. Yan, G, Li, L, Tao, Y, Liu, S, Liu, Y, Luo, W, Y, Wu, Tang, M, Dong, Z, Cao, Y 2006aIdentification of novel phosphoproteins in signaling pathways triggered by latent membrane protein 1 using functional proteomics technologyProteomics618101821CrossRefGoogle Scholar
  58. Yan G, Luo W, Lu Z, Luo X, Li L, Liu S, Liu Y, Tang M, Dong Z, Cao Y (2006b) Epstein-Barr virus latent membrane protein 1 mediates phosphorylation and nuclear translocation of annexin A2 by activating PKC pathway. Cell Signal [Epub ahead of print]Google Scholar
  59. Yaoi, T, Chamnongpol, S, Jiang, X, Li, X 2006Src homology 2 domain-based high throughput assays for profiling downstream molecules in receptor tyrosine kinase pathwaysMol Cell Proteomics5959968PubMedCrossRefGoogle Scholar
  60. Yeargin, J, Haas, M 1995Elevated levels of wild-type p53 induced by radiolabeling of cells leads to apoptosis or sustained growth arrestCurr Biol5423431PubMedCrossRefGoogle Scholar
  61. Yeung, YG, Stanley, ER 2003Proteomic approaches to the analysis of early events in colony-stimulating factor-1 signal transductionMol Cell Proteomics211431155PubMedCrossRefGoogle Scholar
  62. Zhang, Y, Wolf-Yadlin, A, Ross, PL, Pappin, DJ, Rush, J, Lauffenburger, DA, White, FM 2005Time-resolved mass spectrometry of tyrosine phosphorylation sites in the epidermal growth factor receptor signaling network reveals dynamic modulesMol Cell Proteomics412401250PubMedCrossRefGoogle Scholar
  63. Zhou, H, Watts, JD, Aebersold, R 2001A systematic approach to the analysis of protein phosphorylationNat Biotechnol19375378PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • G.-R. Yan
    • 1
  • Q.-Y. He
    • 1
  1. 1.Institutes of Life and Health EngineeringJinan UniversityGuangzhouChina

Personalised recommendations