Advertisement

Amino Acids

, Volume 35, Issue 2, pp 257–265 | Cite as

β-Lactoglobulin as source of bioactive peptides

  • B. Hernández-Ledesma
  • I. Recio
  • L. Amigo
Review Article

Summary.

β-Lactoglobulin (β-Lg) is currently an important source of biologically active peptides. These peptides are inactive within the sequence of the precursor protein, but they can be released by in vivo or in vitro enzymatic proteolysis. Once released, these peptides play important roles in the human health, including antihypertensive, antioxidant and antimicrobial activities as well as opioid-like features and ability to decrease the body-cholesterol levels. Bioactive peptides derived from β-Lg are currently a point of intensive research. Their structure, biological significance and mechanism of action are briefly presented and discussed in this review.

Keywords: β-Lactoglobulin – Bioactive peptides – Physiological activity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abubakar, A, Saito, T, Kitazawa, H, Kawai, Y, Itoh, T 1998Structural analysis of new antihypertensive peptides derived from cheese whey protein by proteinase K digestionJ Dairy Sci8131313138PubMedCrossRefGoogle Scholar
  2. Ames, BN, Shigenaga, MK, Hagen, TM 1993Oxidants, antioxidants, and the degenerative diseases of agingProc Natl Acad Sci USA9079157922PubMedCrossRefGoogle Scholar
  3. Antila, P, Paakari, I, Järvinen, A, Mattila, MJ, Laukkanen, M, Pihlanto-Leppälä, A, Mäntsälä, P, Hellman, J 1991Opioid peptides derived from in-vitro proteolysis of bovine whey proteinsInt Dairy J1215229CrossRefGoogle Scholar
  4. Biziulevicius, GA, Kislukhina, OV, Kazlauskaite, J, Zukaite, V 2006Food-protein enzymatic hydrolysates possess both antimicrobial and immunostimulatory activities: a “cause and effect” theory of bifunctionalityFEMS Immunol Med Microbiol46131138PubMedCrossRefGoogle Scholar
  5. Brautnizer, G, Chen, R, Schrank, B, Stangl, A 1973Die Sequenzanalyse des β-LactoglobulinsHoppe Seyler’s Z Physiol Chem354867878Google Scholar
  6. Brodgen, KA 2005Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria?Nat Rev Microbiol3238250CrossRefGoogle Scholar
  7. Chatterton, DEW, Smithers, G, Roupas, P, Brodkorb, A 2006Bioactivity of β-lactoglobulin and α-lactalbumin – technological implications for processingInt Dairy J1612291240CrossRefGoogle Scholar
  8. Chen, CH, Pearson, AM, Gray, JL 1992Effect of synthetic antioxidants (BHA, BHT and PG) on the mutagenicity of IQ-like compoundsFood Chem43177183CrossRefGoogle Scholar
  9. Creamer, LK, Parry, DAD, Malcom, GN 1983Secondary structure of bovine β-lactoglobulin BArch Biochem Biophys22798105PubMedCrossRefGoogle Scholar
  10. Dalgalarrondo, M, Chobert, JM, Dufour, E, Bertrand-Harb, C, Dumont, JP, Haertle, T 1990Characterization of bovine β-lactoglobulin B tryptic peptides by reverse-phase high performance liquid chromatographyMilchwissenschaft45212216Google Scholar
  11. Dávalos, A, Miguel, M, Bartolomé, B, López-Fandiño, R 2004Antioxidant activity of peptides derived from egg white proteins by enzymatic hydrolysisJ Food Prot6719391944PubMedGoogle Scholar
  12. Dawson, R, Liu, S, Jung, B, Messina, S, Eppler, B 2000Effects of high salt diets and taurine on the development of hytpertension in the stroke-prone spontaneously hypertensive ratAmino Acids19643665PubMedCrossRefGoogle Scholar
  13. de Witt, JN 1998Nutritional and functional characteristics of whey proteins in food productsJ Dairy Sci81597608Google Scholar
  14. Eigel, WN, Butler, JE, Ernstrom, CA, Farrell, HM,Jr, Harwalkar, VR, Jenness, R, Whiney, RMcL 1984Nomenclature of proteins of cows milk: Fifth revisionJ Dairy Sci6715991631Google Scholar
  15. El-Zahar, K, Sitohy, M, Choiset, Y, Metro, F, Haertlé, T, Chobert, JM 2004Antimicrobial activity of ovine whey protein and their peptic hydrolysatesMilchwissenschaft59653656Google Scholar
  16. Fitzgerald, RJ, Meisel, H 2000Milk protein derived inhibitors of angiotensin-I-converting enzymeBr J Nutr84S33S37PubMedGoogle Scholar
  17. Fitzgerald, RJ, Murray, BA, Walsh, GJ 2004Hypotensive peptides from milk proteinsJ Nutr134980S988SPubMedGoogle Scholar
  18. Gulcin, I 2007Comparison of in vitro antioxidant and antiradical activities of L-tyrosin and L-DopaAmino Acids32431438PubMedCrossRefGoogle Scholar
  19. Gobbetti, M, Ferranti, P, Smacchi, E, Goffredi, F, Addeo, F 2000Production of angiotensin-I-converting-enzyme-inhibitory peptides in fermented milks started by Lactobacillus delbrueckii subsp. bulgaricus SS1 and Lactococcus lactis subsp. cremoris FT4Appl Environ Microbiol6638983904PubMedCrossRefGoogle Scholar
  20. Gómez-Ruiz, JA, Recio, I, Belloque, J 2004ACE inhibitory activity and structural properties of peptide Asp-Lys-Ile-His-Pro [β-CN f(47–51)]. Study of the peptide forms synthesised by different methodsJ Agric Food Chem5263156319PubMedCrossRefGoogle Scholar
  21. Hambling, SG, McAlpine, AS, Sawyer, L 1992β-lactoglobulinFox, PF eds. Advanced Dairy Chemistry IElsevierAmsterdam141190Google Scholar
  22. Hambraeus, L, Lönnerdal, B 2003Nutritional aspects of milk proteinsFox, PFMcSweeney, PLHM eds. Advanced Dairy Chemistry (I. Proteins 3rd edn, Part B)KluwerNew York606645Google Scholar
  23. Henle, T 2005Protein-bound advanced glycation endproducts (AGEs) as bioactive amino acid derivates in foodsAmino Acids29313322PubMedCrossRefGoogle Scholar
  24. Hernández-Ledesma, B, Amigo, L, Ramos, M, Recio, I 2004Application of HPLC-MS/MS to the identification of biologically active peptides produced by milk fermentation and simulated gastrointestinal digestionJ Chromatogr A1049107114PubMedGoogle Scholar
  25. Hernández-Ledesma, B, Dávalos, A, Bartolomé, B, Amigo, L 2005Preparation of antioxidant enzymatic hydrolyzates from α-lactalbumin and β-lactoglobulin. Identification of peptides by HPLC-MS/MSJ Agric Food Chem53588593PubMedCrossRefGoogle Scholar
  26. Hernández-Ledesma B, Miguel M, Amigo L, Aleixandre MA, Recio I (2007a) Effect of simulated gastrointestinal digestion on the antihypertensive properties of β-lactoglobulin peptides. J Dairy Res 74: doi:10.1017/S0022029907002609Google Scholar
  27. Hernández-Ledesma, B, Recio, I, Amigo, L, Bartolomé, B 2007bACE-inhibitory and radical scavenging activity of peptides derived from β-lactoglobulin f(19–25)J Agric Food Chem5533923397CrossRefGoogle Scholar
  28. Hernández-Ledesma, B, Recio, I, Ramos, M, Amigo, L 2002Preparation of ovine and caprine β-Lg hydrolysates with ACE-inhibitory activity. Identification of active peptides from β-Lg hydrolysed with thermolysinInt Dairy J12805812CrossRefGoogle Scholar
  29. Janin, YL 2003Peptides with anticancer use or potentialAmino Acids25140PubMedGoogle Scholar
  30. Krause, C, Kirschbaum, J, Bruckner, H 2006Peptaibiomics: an advanced, rapid and selective analysis of peptaibiotics/peptaibols by SPE/LC-ES-MSAmino Acids30435443PubMedCrossRefGoogle Scholar
  31. Lohner, K, Blondelle, SE 2005Molecular mechanisms of membrane perturbation by antimicrobial peptides and the use of biophysical studies in the design of novel peptide antibioticsComb Chem High Throughput Screen8241256PubMedCrossRefGoogle Scholar
  32. López-Fandiño, R, Otte, J, van Camp, J 2006Physiological, chemical and technological aspects of milk-protein-derived peptides with antihypertensive and ACE-inhibitory activityInt Dairy J1612771293CrossRefGoogle Scholar
  33. Mcintosh, GH, Regester, GD, Lelue, RK, Royle, PJ, Smithers, GW 1995Dairy proteins protect against dimethylhydrazine-induced intestinal cancers in ratsJ Nutr125809816PubMedGoogle Scholar
  34. Meisel, H 1997Biochemical properties of bioactive peptides derived from milk proteins: potential nutraceuticals for food and pharmaceutical applicationsLivest Prod Sci50125138CrossRefGoogle Scholar
  35. Meisel, H 1998Overview on milk protein-derived peptidesInt Dairy J8363373CrossRefGoogle Scholar
  36. Meisel, H 2005Biochemical properties of peptides encrypted in bovine milk proteinsCurr Med Chem1219051919PubMedCrossRefGoogle Scholar
  37. Mercier, A, Gauthier, SF, Fliss, I 2004Immunomodulating effects of whey proteins and their enzymatic digestsInt Dairy J14175183CrossRefGoogle Scholar
  38. Mullally, MM, Meisel, H, Fitzgerald, RJ 1996Synthetic peptides corresponding to α-lactalbumin and β-lactoglobulin sequences with angiotensin-I-converting enzyme inhibitory activityBiol Chem Hoppe Seyler377259260PubMedGoogle Scholar
  39. Mullally, MM, Meisel, H, Fitzgerald, RJ 1997Identification of a novel angiotensin-I-converting enzyme inhibitory peptide corresponding to a tryptic fragment of bovine β-lactoglobulinFEBS Lett40299101PubMedCrossRefGoogle Scholar
  40. Murakami, M, Tonouchi, H, Takashahi, R, Kitazawa, H, Kawai, Y, Negishi, H, Saito, T 2004Structural analysis of a new antihypertensive peptide (beta-lactosin B) isolated from a commercial whey productJ Dairy Sci8719671974PubMedGoogle Scholar
  41. Nagaoka, S, Futamura, Y, Miwa, K, Awano, T, Yamauchi, K, Kanamaru, Y, Tadashi, K, Kuwata, T 2001Identification of novel hypocholesterolaemic peptides derived from bovine milk β-lactoglobulinBiochem Biophys Res Commun2811117PubMedCrossRefGoogle Scholar
  42. Nagaoka, S, Kanamaru, Y, Kuzuya, Y 1991Effects of whey-protein and casein on the plasma and liver lipids in ratsAgric Biol Chem55813818Google Scholar
  43. Nagaoka, S, Kanamaru, Y, Kuzuya, Y, Kojima, T, Kuwata, T 1992Comparative studies on the serum-cholesterol lowering action of whey-protein and soybean-protein in ratsBiosci Biotechnol Biochem5614841485CrossRefGoogle Scholar
  44. Papiz, MZ, Sawyer, L, Eliopoulos, EE, North, ACT, Findlay, JBC, Sivaprasadarao, R, Jones, TA, Newcomer, ME, Kraulis, PJ 1986The structure of β-lactoglobulin and its similarity to plasma retinol binding proteinNature324383385PubMedCrossRefGoogle Scholar
  45. Pellegrini, A 2003Antimicrobial peptides from food proteinsCurr Pharm Des912251238PubMedCrossRefGoogle Scholar
  46. Pellegrini, A, Dettling, C, Thomas, U, Hunziker, P 2001Isolation and characterization of four bactericidal domains in the bovine β-lactoglobulinBiochim Biophys Acta1526131140PubMedGoogle Scholar
  47. Peña-Ramos, EA, Xiong, YL 2001Antioxidative activity of whey protein. Hydrolyzates in a liposomal systemJ Dairy Sci8425772583PubMedCrossRefGoogle Scholar
  48. Peña-Ramos, EA, Xiong, YL 2003Whey and soy protein hydrolsates inhibit lipid oxidation in cooked pork pattiesMeat Sci64259263CrossRefGoogle Scholar
  49. Peña-Ramos, EA, Xiong, YL, Arteaga, GE 2004Fractionation and characterization for antioxidant activity of hydrolysed whey proteinJ Sci Food Agric8419081918CrossRefGoogle Scholar
  50. Pihlanto-Leppälä, A, Koskinen, P, Piilola, K, Tupasela, T, Coronen, H 2000Angiotensin-I-converting enzyme inhibitory properties of whey protein digests: concentration and characterization of active peptidesJ Dairy Res675364PubMedCrossRefGoogle Scholar
  51. Pihlanto-Leppälä, A, Marnila, P, Hubert, L, Rokka, T, Korhonen, HJ, Karp, M 1999The effect of α-lactalbumin and β-lactoglobulin hydrolysates on the metabolic activity of Escherichia coli JM103J Appl Microbiol87540545PubMedCrossRefGoogle Scholar
  52. Pihlanto-Leppälä, A, Rokka, T, Korhonen, H 1998Angiotensin I converting enzyme inhibitory peptides derived from bovine milk proteinsInt Dairy J8325331CrossRefGoogle Scholar
  53. Pihlanto-Leppälä, A 2001Bioactive peptides derived from bovine whey proteins: opioid and ace-inhibitory peptidesTrends Food Sci Tech11347356CrossRefGoogle Scholar
  54. Pripp, AH, Isaksson, T, Stepaniak, L, Sorhaug, T 2004Quantitative structure-activity relationship modelling of ACE-inhibitory peptides derived from milk proteinsEur Food Res Technol219579583CrossRefGoogle Scholar
  55. Quirós, A, Hernández-Ledesma, B, Amigo, L, Recio, I 2005Angiotensin converting enzyme inhibitory activity of peptides derived from caprine kefir. Behaviour of active peptides under simulated gastrointestinal digestionJ Dairy Sci8834803487PubMedCrossRefGoogle Scholar
  56. Seppo, L, Jauhiainen, T, Poussa, T, Korpela, R 2003A fermented milk high in bioactive peptides has a blood pressure-lowering effect in hypertensive subjectsAm J Clin Nutr77326330PubMedGoogle Scholar
  57. Siemion, IZ, Kluczyk, A, Cebrat, M 2005The peptide molecular links between the central nervos and the immune systemsAmino Acids29161176PubMedCrossRefGoogle Scholar
  58. Silva, SV, Malcata, FX 2004Caseins as source of bioactive peptidesInt Dairy J15115CrossRefGoogle Scholar
  59. Sipola, M, Finckenberg, P, Vapaatalo, H, Pihlanto-Leppälä, A, Korhonen, H, Korpela, R, Nurminen, M-L 2002α-Lactorphin and β-lactorphin improve arterial function in spontaneously hypertensive ratsLife Sci7112451253PubMedCrossRefGoogle Scholar
  60. Skeggs, LT, Kahn, JR, Shumway, NP 1956The preparation and function of the hypertensin-converting enzymeJ Exp Med103295299PubMedCrossRefGoogle Scholar
  61. Sutton, LF, Alston-Mills, B 2006β-Lactoglobulin as a potential modulator of intestinal activity and morphology in neonatal pigletsAnat Rec Part A288A601608CrossRefGoogle Scholar
  62. Yamauchi, R, Ohinata, K, Yoshikawa, M 2003bβ-lactotensin and neurotensin rapidly reduce serum cholesterol via NT2 receptorPeptides2419551961CrossRefGoogle Scholar
  63. Yamauchi, R, Usui, H, Yunden, J, Takenaka, Y, Tani, F, Yoshikawa, M 2003aCharacterization of β-lactotensin, a bioactive peptide derived from bovine β-lactoglobulin, as a neurotensin agonistBiosci Biotechnol Biochem67940943CrossRefGoogle Scholar
  64. Yamauchi, R, Wada, E, Yamada, D, Yoshikawa, M, Wada, K 2006Effect of β-lactotensin on acute stress and fear memoryPeptides2731763182PubMedCrossRefGoogle Scholar
  65. Yoshikawa M, Sasaki R, Chiba H, Tani F (1991) Japan Kokai Tokkyo Koho, 220197 (Sep. 27)Google Scholar
  66. Zhang, L, Falla, TJ 2004Cationic antimicrobial peptides-an updateExpert Opin Investig Drugs1397106PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • B. Hernández-Ledesma
    • 1
  • I. Recio
    • 1
  • L. Amigo
    • 1
  1. 1.Instituto de Fermentaciones Industriales (CSIC)MadridSpain

Personalised recommendations