Skip to main content
Log in

Strong and weak hydrogen bonds in protein-ligand complexes of kinases: a comparative study

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Strong and weak hydrogen bonds between protein and ligand are analyzed in a group of 233 X-ray crystal structures of the kinase family. These kinases are from both eukaryotic and prokaryotic organisms. The dataset comprises of 44 sub-families, out of which 35 are of human origin and the rest belong to other organisms. Interaction analysis was carried out in the active sites, defined here as a sphere of 10 Å radius around the ligand. A majority of the interactions are observed between the main chain of the protein and the ligand atoms. As a donor, the ligand frequently interacts with amino acid residues like Leu, Glu and His. As an acceptor, the ligand interacts often with Gly, and Leu. Strong hydrogen bonds N–H···O, O–H···O, N–H···N and weak bonds C–H···O, C–H···N are common between the protein and ligand. The hydrogen bond donor capacity of Gly in N–H···O and C–H···O interactions is noteworthy. Similarly, the acceptor capacity of main chain Glu is ubiquitous in several kinase sub-families. Hydrogen bonds between protein and ligand form characteristic hydrogen bond patterns (supramolecular synthons). These synthon patterns are unique to each sub-family. The synthon locations are conserved across sub-families due to a higher percentage of conserved sequences in the active sites. The nature of active site water molecules was studied through a novel classification scheme, based on the extent of exposure of water molecules. Water which is least exposed usually participates in hydrogen bond formation with the ligand. These findings will help structural biologists, crystallographers and medicinal chemists to design better kinase inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

PKs:

Protein kinases

PKR:

Protein kinase resource

PDB:

Protein Data Bank

HBAT:

Hydrogen bond analysis tool

SVL:

Scientific vector language

References

  • Aparna V, Rambabu G, Panigrahi SK, Sarma JARP, Desiraju GR (2005) Virtual screening of 4-anilinoquinazoline analogs as EGFR kinase inhibitors: importance of hydrogen bonds in the evaluation of poses and scoring functions. J Chem Inf Model 45:725–738

    Article  PubMed  CAS  Google Scholar 

  • Auffinger P, Hays FA, Westhof E, Ho PS (2004) Halogen bonds in biological molecules. Proc Natl Acad Sci USA 101:16789–16794

    Article  PubMed  CAS  Google Scholar 

  • Baker EN, Hubbard RE (1984) Hydrogen bonding in globular proteins. Progr Biophys Mol Biol 44:97–179

    Article  CAS  Google Scholar 

  • Bartlett GJ, Porter CT, Borkakoti N, Thornton JM (2002) Analysis of catalytic residues in enzyme active sites. J Mol Biol 324:105–121

    Article  PubMed  CAS  Google Scholar 

  • Bikadi Z, Demko L, Hazai E (2007) Functional and structural characterization of a protein based on analysis of its hydrogen bonding network by hydrogen bonding plot. Arch Biochem Biophys 461:225–234

    Article  PubMed  CAS  Google Scholar 

  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank Nucleic Acid Res 28:235–242. http://www.rcsb.org/pdb

    Google Scholar 

  • Brandl M, Weiss MS, Jabs A, Sühnel J, Hilgenfeld R (2001) C–H···π interactions in proteins. J Mol Biol 307:357–377

    Article  PubMed  CAS  Google Scholar 

  • Bridges AJ (2001) Chemical inhibitors of protein kinases. Chem Rev 101:2541–2571

    Article  PubMed  CAS  Google Scholar 

  • Bottoms CA, Smith PE, Tanner JJ (2002) Protein Sci 11:2125–2137

    Article  PubMed  CAS  Google Scholar 

  • Cohen P (2002) Protein kinases—the major drug targets of the twenty-first century. Nature Rev Drug Discov 1:309–315

    Article  CAS  Google Scholar 

  • Dar AC, Wybenga-Groot LE, Sicheri F (2005) The eukaryotic protein kinase domain. In: Cesareni G, Gimona M, Sudol M, Yaffe M (eds) Modular protein domains, chap 9. Wiley-VCH, Verlag GmbH & Co, KGaA

  • Desiraju GR, Steiner T (1999) The weak hydrogen bond in structural chemistry and biology, chaps 1 and 5. Oxford University Press, Oxford

    Google Scholar 

  • Desiraju GR (1995) Supramolecular synthons in crystal engineerings A—new organic synthesis. Angew Chem Int Ed 34:2311–2327

    Article  CAS  Google Scholar 

  • Denessiouk KA, Johnson MS (2003) “Acceptor–donor–acceptor” motifs recognize the watson–crick, hoogsteen and sugar “donor–acceptor–donor” edges of adenine and adenosinecontaining ligands. J Mol Biol 333:1025–1043

    Article  PubMed  CAS  Google Scholar 

  • Gitlin I, Carbeck JD, Whitesides GM (2006) Why are proteins charged? Networks of charge–charge interactions in proteins measured by charge ladders and capillary electrophoresis. Angew Chem Int Ed 45:3022–3060

    Article  CAS  Google Scholar 

  • Glusker JP (1995) Intermolecular interactions around functional groups in crystals: data for modeling the binding of drugs to biological macromolecules. Acta Cryst D51:418–427

    CAS  Google Scholar 

  • Halgren T (1996) Merck molecular force field. I. Basis, form, scope, parameterisation and performance of MMFF94. J Comput Chem 17:490–519

    Article  CAS  Google Scholar 

  • Hanks SK, Hunter T (1995) Protein kinases the eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB J 9:576–596

    PubMed  CAS  Google Scholar 

  • Higgins D, Thompson J, Gibson T, Thompson JD, Higgins DG, Gibson TJ (1994) Nucleic Acids Res 22:4673–4680. ClustalW WWW Service at the European Bioinformatics Institute http://www.ebi.ac.uk/clustalw

    Google Scholar 

  • Jeffrey GA, Saenger W (1991) Hydrogen bonding in biological structures. Springer, Berlin

    Google Scholar 

  • Klaholz B, Moras D (2002) C–H···O hydrogen bonds in the nuclear receptor RARγ-a potential tool for drug selectivity. Structure 10:1197–1204

    Article  PubMed  CAS  Google Scholar 

  • Koellner G, Steiner T, Millard CB, Silman I, Sussman JL (2002) A neutral molecule in a cation-binding site: specific binding of a PEG-SH to acetylcholinesterase from Torpedo californica. J Mol Biol 320:721–725

    Article  PubMed  CAS  Google Scholar 

  • Ladbury JE (1996) Just add water! The effect of water on the specificity of protein–ligand binding sites and its potential application to drug design. Chem Biol 3:973–980

    Article  PubMed  CAS  Google Scholar 

  • Lipinski CA, Lombardo F, Dominy BW, Feeney PL (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23:3–25

    Article  CAS  Google Scholar 

  • Levitzki A (2003) Protein kinase inhibitors as a therapeutic modality. Acc Chem Res 36:462–469

    Article  PubMed  CAS  Google Scholar 

  • Mao L, Wang Y, Lie Y, Hu X (2004) Molecular determinants for ATP-binding in proteins: a data mining and quantum chemical analysis. J Mol Biol 336:787–807

    Article  PubMed  CAS  Google Scholar 

  • MOE Program, Version 2006–08 Chemical Computing Inc, Sherbrooke St. W, Montreal, Quebec, Canada, H3A 2R7

  • Naumann T, Matter H (2002) Structural classification of protein kinases using 3D molecular interaction field analysis of their ligand binding sites: target family landscapes. J Med Chem 45:2366–2378

    Article  PubMed  CAS  Google Scholar 

  • Panigrahi SK, Desiraju GR (2007) Strong and weak hydrogen bonds in the protein–ligand interface. Proteins 67:128–141

    Article  PubMed  CAS  Google Scholar 

  • Panigrahi SK, Desiraju GR (2004) Homology modelling in protein structure prediction: epidermal growth factor receptor kinase domain. Nat Acad Sci Lett (India) 27:1–11

    Google Scholar 

  • Pierce AC, Sandretto KL, Bemis GW (2002) Kinase inhibitors and the case for CH···O hydrogen bonds in protein–ligand binding. Proteins 49:567–576

    Article  PubMed  CAS  Google Scholar 

  • Pierce AC, ter Haar E, Binch HM, Kay DP, Patel SR, Li P (2005) CH···O and CH···N hydrogen bonds in ligand design: a novel quinazolin-4-ylthiazol-2-ylamine protein kinase inhibitor. J Med Chem 48:1278–1281

    Article  PubMed  CAS  Google Scholar 

  • Sarkhel S, Desiraju GR (2004) N–H···O, O–H···O, and C–H···O hydrogen bonds in protein–ligand complexes: strong and weak interactions in molecular recognition. Proteins 54:247–259

    Article  PubMed  CAS  Google Scholar 

  • Steiner T (2002) The hydrogen bond in the solid state. Angew Chem Int Ed 41:48–76

    Article  CAS  Google Scholar 

  • Sugen (2002) Structure and Phylogeny of the Protein Kinases, Salk Institute, La Jolla, CA. http://198.202.68.14/human/kinome/phylogeny.html and http://kinasedb.ontology.ims.u-tokyo.ac.jp

  • The Protein Kinase Resource, SDSC, UC, San Diego, MC, 2004, http://www.kinasenet.org/pkr

  • Tiwari A, Panigrahi SK (2007) HBAT: a complete package for analysing strong and weak hydrogen bonds in macromolecular crystal structures. In Silico Biol 7:0057

    Google Scholar 

  • Vishweshwar P, Nangia A, Lynch VM (2003) Molecular complexes of homologous alkanedicarboxylic acids with isonicotinamide: X-ray crystal structures, hydrogen bond synthons, and melting point alternation. Cryst Growth Des 3:783–790

    Article  CAS  Google Scholar 

  • Vieth M, Higgs RE, Robertson DH, Shapiro M, Gragg EA, Hemmerle H (2004) Kinomics-structural biology and chemogenomics of kinase inhibitors and targets. Biochim Biophys Acta 1697:243–257

    PubMed  CAS  Google Scholar 

  • Wang R, Fang X, Lu Y, Yang CY, Wang S (2005) The PDBbind database: methodologies and updates J Med Chem 48:4111–4119. http://www.pdbbind.org

    Google Scholar 

  • Walsh RDB, Bradner MW, Fleischman S, Morales LA, Moulton B, Rodríguez-Hornedo N, Zaworotko M (2003) Crystal engineering of the composition of pharmaceutical phases. J Chem Commun 2:186–187. doi:10.1039/b208574g

    Article  CAS  Google Scholar 

  • Williams DH, Mitchell T (2002) Latest developments in crystallography and structure-based design of protein kinase inhibitors as drug candidates, Curr Opin Pharmacol 2:567–573

    Article  PubMed  CAS  Google Scholar 

  • Williams MA, Goodfellow JM, Thornton JM (1994) Buried waters and internal cavities in monomeric proteins. Protein Sci 3:1224–1235

    Article  PubMed  CAS  Google Scholar 

  • Wilhelm S, Carter C, Lynch M., Lowinger T, Dumas J, Smith RA, Schwartz B., Simantov R, Kelley S (2006) Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nat Rev Drug Discov 5:835–844

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

S. K. P. thanks Prof. Gautam R. Desiraju, School of Chemistry, University of Hyderabad, Hyderabad, for his helpful guidance in preparing the manuscript. S. K. P. also thanks the chemical computing group (CCG) for technical support and CSIR for fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil K. Panigrahi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panigrahi, S.K. Strong and weak hydrogen bonds in protein-ligand complexes of kinases: a comparative study. Amino Acids 34, 617–633 (2008). https://doi.org/10.1007/s00726-007-0015-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-007-0015-4

Keywords

Navigation