Skip to main content
Log in

Biological activity of antitumoural MGBG: the structural variable

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The present study aims at determining the structure-activity relationships (SAR’s) ruling the biological function of MGBG (methylglyoxal bis(guanylhydrazone)), a competitive inhibitor of S-adenosyl-l-methionine decarboxylase displaying anticancer activity, involved in the biosynthesis of the naturally occurring polyamines spermidine and spermine. In order to properly understand its biochemical activity, MGBG’s structural preferences at physiological conditions were ascertained, by quantum mechanical (DFT) calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CsA:

Cyclosporin A

ΔΨ:

Electrical membrane potential

DFT:

Density functional theory

FCCP:

Carbonyl cyanide-p-trifluorometoxyphenylhydrazone

MGBG:

Methylglyoxal bis(guanylhydrazone)

MPT:

Mitochondrial permeability transition

PCM:

Polarised continuum model

RLM:

Rat liver mitochondria

SAMDC:

S-Adenosyl-l-methionine decarboxylase

SCRF:

Self-consistent reaction field

SD:

Standard deviation

SSAT:

Spermidine–spermine acetyltranferase

TPP+ :

Tetraphenylphosphonium cation

References

  • Agostinelli E, Arancia G, Dalla Vedova L, Belli F, Marra M, Salvi M, Toninello A (2004) The biological functions of polyamine oxidation products by amine oxidases: perspectives of clinical application. Amino Acids 27:347–358

    Article  PubMed  CAS  Google Scholar 

  • Agostinelli E, Tempera G, Molinari A, Salvi M, Battaglia V, Toninello A, Arancia G (2007) The physiological role of biogenic amines redox reactions in mitochondria. New perspectives in cancer therapy. Amino Acids 33:175–187

    Article  PubMed  CAS  Google Scholar 

  • Barone V, Cossi M, Tomasi J (1998) Geometry optimization of molecular structures in solution by the polarizable continuum model. J Comp Chem 19:404–417

    Article  CAS  Google Scholar 

  • Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  • Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Brady LJ, Brady PS, Gandour RD (1987) Effect of methylglyoxal bis(guanylhydrazone) on hepatic, heart and skeletal muscle mitochondrial carnitine palmitoyltransferase and beta-oxidation of fatty acids. Biochem Pharmacol 36:447–452

    Article  PubMed  CAS  Google Scholar 

  • Byczkowski JZ, Porter CW (1983) Interactions between bis(guanylhydrazones) and polyamines in isolated mitochondria. Gen Pharmacol 14:615–621

    PubMed  CAS  Google Scholar 

  • Byczkowski JZ, Salomon W, Harlos JP, Porter CW (1981) Actions of bis(guanylhydrazones) on isolated rat liver mitochondria. Biochem Pharmacol 30:2851–2860

    Article  PubMed  CAS  Google Scholar 

  • Cabella C, Gardini G, Corpillo D, Testore G, Bedino S, Solinas SP, Cravanzola C, Vargiu C, Grillo MA, Colombatto S (2001) Transport and metabolism of agmatine in rat hepatocyte cultures. Eur J Biochem 268:940–947

    Article  PubMed  CAS  Google Scholar 

  • Cammi R, Tomasi J (1995) Remarks on the use of the apparent surface charges (ASC) methods in solvation problems: iterative versus matrix-inversion procedures and the renormalization of the apparent charges. J Comp Chem 16:1449–1458

    Article  CAS  Google Scholar 

  • Clausen T, Flatman JA (1977) The effect of catecholamines on Na-K transport and membrane potential in rat soleus muscle. J Physiol 270:383–414

    PubMed  CAS  Google Scholar 

  • Cotton FA, Feng X (1998) Density functional theory study of transition-metal compounds containing metal-metal bonds. 2. Molecular structures and vibrational spectra of dinuclear tetracarboxylate compounds of molybdenum and rhodium. J Am Chem Soc 120:3387–3397

    Article  CAS  Google Scholar 

  • Dalla Via L, Di Noto V, Toninello A (1999) Binding of spermidine and putrescine to energized liver mitochondria. Arch Biochem Biophys 365:231–238

    Article  PubMed  CAS  Google Scholar 

  • Dalla Via L, Di Noto V, Siliprandi D, Toninello A (1985) Uptake of spermine by rat liver mitochondria and its influence on the transport of phosphate. Biochim Biophys Acta 815:399–404

    Article  Google Scholar 

  • Di Lisa F, Bobileva-Guarriero V, Jocelyn P, Toninello A, Siliprandi N (1985) Stabilising action of carnitine on energy linked processes in rat liver mitochondria. Biochem Biophys Res Commun 131:968–973

    Article  PubMed  CAS  Google Scholar 

  • Diwan JJ, Yune HH, Bawa R, Haley T, Mannella CA (1988) Enhanced uptake of spermidine and methylglyoxal-bis(guanylhydrazone) by rat liver mitochondria following outer membrane lysis. Biochem Pharmacol 37:957–961

    Article  PubMed  CAS  Google Scholar 

  • Ferioli ME, Armanni A (2003) Polyamine oxidase activity in rats treated with mitoguazone: specific and permanent decrease in thymus. Amino Acids 24:187–194

    PubMed  CAS  Google Scholar 

  • Feuerstein B, Porter CW, Dave C (1979) A selective effect of methylglyoxal-bis(guanylhydrazone) on the synthesis of mitochondrial DNA of cultured L1210 leukemia cells. Cancer Res 39:4130–4137

    PubMed  CAS  Google Scholar 

  • Francl MM, Pietro WJ, Hehre WJ, Binkley JS, Gordon M, DeFrees D, Pople JA (1982) Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for second-row elements. J Chem Phys 77:3654–3665

    Article  CAS  Google Scholar 

  • Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA Jr, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA,Ayala PY, CuiQ, MorokumaK,Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ,Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian 98, Revision A.9. Gaussian Inc., Pittsburgh, PA, USA

  • Gornall AG, Bardawill CJ, David MM (1949) Determination of serum proteins by means of the biuret reaction. J Biol Chem 177:751–766

    PubMed  CAS  Google Scholar 

  • Gosalvez M, Blanco M, Hunter J, Miko M, Chance B (1974) Effects of anticancer agents on the respiration of isolated mitochondria and tumor cells. Eur J Cancer 10:567–574

    PubMed  CAS  Google Scholar 

  • Grundemann D, Hahne C, Berkels R, Schomig E (2003) Agmatine is efficiently transported by non-neuronal monoamine transporters extraneuronal monoamine transporter (EMT) and organic cation transporter 2 (OCT2). J Pharmacol Exp Ther 304:810–817

    Article  PubMed  CAS  Google Scholar 

  • Hariharan PC, Pople JA (1973) The influence of polarization functions on molecular orbital hydrogenation energies. Theor Chim Acta 28:213–222

    Article  CAS  Google Scholar 

  • Kamo N, Muratsugu M, Hongoh R, Kobatake Y (1979) Membrane potential of mitochondria measured with an electrode sensitive to tetraphenyl phosphonium and relationship between proton electrochemical potential and phosphorylation potential in steady state. J Membr Biol 49:105–121

    Article  PubMed  CAS  Google Scholar 

  • Lapidus RG, Sokolove PM (1994) The mitochondrial permeability transition. Interactions of spermine, ADP, and inorganic phosphate. J Biol Chem 269:18931–18936

    PubMed  CAS  Google Scholar 

  • Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  • Mailer K, Petering DH (1976) Inhibition of oxidative phosphorylation in tumor cells and mitochondria by daunomycin and adriamycin. Biochem Pharmacol 25:2085–2089

    Article  PubMed  CAS  Google Scholar 

  • Miehlich B, Savin A, Stoll H, Preuss H (1989) Results obtained with the correlation energy density functionals of becke and Lee, Yang and Parr. Chem Phys Lett 157:200–206

    Article  CAS  Google Scholar 

  • Miertus S, Scrocco E, Tomasi J (1981) Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects. J Chem Phys 55: 117–129

    Article  CAS  Google Scholar 

  • Mihich E (1963) Current studies with methylglyoxal-bis(guanylhydrazone). Cancer Res 23:1375–1389

    PubMed  CAS  Google Scholar 

  • Muhammed H, Ramasarma T, Kurup CK (1983) Inhibition of mitochondrial oxidative phosphorylation by adriamycin. Biochim Biophys Acta 722:43–50

    Article  PubMed  CAS  Google Scholar 

  • Nikula P, Ruohola H, Alhonen-Hongisto L, Janne J (1985) Carnitine prevents the early mitochondrial damage induced by methylglyoxal bis(guanylhydrazone) in L1210 leukaemia cells. Biochem J 228:513–516

    PubMed  CAS  Google Scholar 

  • Palmieri F, Klingenberg M (1979) Direct methods for measuring metabolite transport and distribution in mitochondria. Methods Enzymol 56:279–301

    Article  PubMed  CAS  Google Scholar 

  • Peng C, Ayala PY, Schlegel HB, Frisch MJ (1996) Using redundant internal coordinates to optimize equilibrium geometries and transition states. J Comp Chem 17:49–56

    Article  CAS  Google Scholar 

  • Probst I, Unthan-Fechner K (1985) Activation of glycolysis by insulin with a sequential increase of the 6-phosphofructo-2-kinase activity, fructose-2,6-bisphosphate level and pyruvate kinase activity in cultured rat hepatocytes. Eur J Biochem 153:347–353

    Article  PubMed  CAS  Google Scholar 

  • Ray S, Dutta S, Halder J, Ray M (1994) Inhibition of electron flow through complex I of the mitochondrial respiratory chain of Ehrlich ascites carcinoma cells by methylglyoxal. Biochem J 303:69–72

    PubMed  CAS  Google Scholar 

  • Regenass U, Caravatti G, Mett H, Stanek J, Schneider P, Muller M (1992) New S-adenosylmethionine decarboxylase inhibitors with potent antitumor activity. Cancer Res 52:4712–4718

    PubMed  CAS  Google Scholar 

  • Salvi M, Battaglia V, Mancon M, Colombatto S, Cravanzola C, Calheiros R, Marques MPM, Grillo MA, Toninello A (2006) Agmatine is transported into liver mitochondria by a specific electrophoretic mechanism. Biochem J 396:337–345

    Article  PubMed  CAS  Google Scholar 

  • Schneider WC, Hogeboom GH (1950) Intracellular distribution of enzymes. V. further studies on the distribution of cytochrome c in rat liver homogenates. J Biol Chem 183:123–128

    CAS  Google Scholar 

  • Tassani V, Biban C, Toninello A, Siliprandi D (1995) Inhibition of mitochondrial permeability transition by polyamines and magnesium: importance of the number and distribution of electric charges. Biochem Biophys Res Commun 207:661–667

    Article  PubMed  CAS  Google Scholar 

  • Toninello A, Battaglia V, Salvi M, Calheiros R, Marques MPM (2006) Structural characterization of agmatine at physiological conditions. Struct Chem 17:163–175

    Article  CAS  Google Scholar 

  • Toninello A, Dalla Via L, Di Noto V, Mancon M (1999) The effects of methylglyoxal-bis(guanylhydrazone) on spermine binding and transport in liver mitochondria. Biochem Pharmacol 58:1899–1906

    Article  PubMed  CAS  Google Scholar 

  • Toninello A, Dalla Via L, Testa S, Siliprandi D (1992a) Electrophoretic polyamine transport in rat liver mitochondria. Amino Acids 2:69–76

    Article  CAS  Google Scholar 

  • Toninello A, Dalla Via L, Siliprandi D, Garlid KD (1992b) Evidence that spermine, spermidine, and putrescine are transported electrophoretically in mitochondria by a specific polyamine uniporter. J Biol Chem 267:18393–18397

    PubMed  CAS  Google Scholar 

  • Toninello A, Di Lisa F, Siliprandi D, Siliprandi N (1985) Uptake of spermine by rat liver mitochondria and its influence on the transport of phosphate. Biochim Biophys Acta 815:399–404

    Article  PubMed  CAS  Google Scholar 

  • Toninello A, Salvi M, Mondovi B (2004) Interaction of biologically active amines with mitochondria and their role in the mitochondrial-mediated pathway of apoptosis. Curr Med Chem 11:2349–2374

    PubMed  CAS  Google Scholar 

  • Toninello A, Siliprandi D, Castagnini P, Novello MC, Siliprandi N (1988) Protective action of methylglyoxal bis (guanylhydrazone) on the mitochondrial membrane. Biochem Pharmacol 37:3395–3399

    Article  PubMed  CAS  Google Scholar 

  • Von Hoff DD (1994) MGBG: teaching an old drug new tricks. Ann Oncol 5:487–493

    Google Scholar 

  • Wagener T, Frenking G (1998) Theoretical study of transition metal compounds with molybdenum–andtungsten–phosphorus triple bonds. Inorg Chem 37:1805–1811

    Article  CAS  Google Scholar 

  • Wallace HM, Fraser AW (2004) Inhibitors of polyamine metabolism. Amino Acids 26:353–365

    Article  PubMed  CAS  Google Scholar 

  • Warrell RP, Burchenal JH (1983) Methylglyoxal-bis(guanylhydrazone) (Methyl-GAG): current status and future prospects. J Clin Oncol 1:52–65

    PubMed  Google Scholar 

  • Williams-AshmanHG, Schenone A (1972) Methyl glyoxal bis(guanylhydrazone) as a potent inhibitor of mammalian and yeast S-adenosylmethionine decarboxylases. Biochem Biophys Res Commun 46:288–295

    Article  Google Scholar 

  • Williams-Ashman HG, Seidenfeld J (1986) Aspects of the biochemical pharmacology of methyl glyoxal bis(guanylhydrazone). Biochem Pharmacol 35:1217–1225

    Article  PubMed  CAS  Google Scholar 

  • ZorattiM, Szabò I (1995) The mitochondrial permeabilitytransition. Biochem Biophys Acta 1241:139–176

    Google Scholar 

Download references

Acknowledgments

Work performed within the COST Action 922 from the European Science Foundation. RC acknowledges financial support from the Portuguese Foundation for Science and Technology—PhD fellowship SFRH/BD/16520/2004. The authors also thank Sandoz Pharma, Basel (Switzerland) for having supplied cyclosporin A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. M. Marques.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marques, M.P.M., Gil, F.P.S.C., Calheiros, R. et al. Biological activity of antitumoural MGBG: the structural variable. Amino Acids 34, 555–564 (2008). https://doi.org/10.1007/s00726-007-0009-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-007-0009-2

Keywords

Navigation