Skip to main content
Log in

Inducible heat shock protein 70 and its role in preconditioning and exercise

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Heat shock proteins (Hsp) are well known to be expressed in response to a range of cellular stresses. They are known to convey protection against protein denaturation and a subsequent immediate stress. Inducible heat shock protein 70 (Hsp70) is among the most studied of these stress proteins and its role and function are discussed here in terms of thermal and in particular exercise preconditioning. Preconditioning has been shown to confer cellular protection via expression Hsp, which may be of benefit in preventing protein damage following subsequent periods of exercise. Many studies have used animal models to gather data on Hsp70 and these and the most recent human studies are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Arieli Y, Eynan M, Gancz H, Arieli R, Kashi Y (2003) Heat acclimation prolongs the time to central nervous system oxygen toxicity in the rat. Possible involvement of HSP72. Brain Res 962:15–20

    Article  PubMed  CAS  Google Scholar 

  • Asea A, Kraeft SK, Kurt-Jones EA, Stevenson MA, Chen LB, Finberg RW, Koo GC, Calderwood SK (2000) HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med 6:435–442

    Article  PubMed  CAS  Google Scholar 

  • Bukau B, Horwich AL (1998) The Hsp70 and Hsp60 chaperone machines. Cell 92:351–366

    Article  PubMed  CAS  Google Scholar 

  • Chirico WJ, Waters MG, Blobel G (1988) 70 K heat shock related proteins stimulate protein translocation into microsomes. Nature 332:805–810

    Article  PubMed  CAS  Google Scholar 

  • Collins PL, Hightower LE (1982) Newcastle disease virus stimulates the cellular accumulation of stress (heat shock) mRNAs and proteins. J Virol 44:703–707

    PubMed  CAS  Google Scholar 

  • Currie RW, Karmazyn M, Kloc M, Mailer K (1988) Heat-shock response is associated with enhanced postischemic ventricular recovery. Circ Res 63:543–549

    PubMed  CAS  Google Scholar 

  • Febbraio MA, Koukoulas I (2000) HSP72 gene expression progressively increases in human skeletal muscle during prolonged, exhaustive exercise. J Appl Physiol 89:1055–1060

    PubMed  CAS  Google Scholar 

  • Fehrenbach E, Passek F, Niess AM, Pohla H, Weinstock C, Dickhuth HH, Northoff H (2000) HSP expression in human leukocytes is modulated by endurance exercise. Med Sci Sports Exerc 32:592–600

    Article  PubMed  CAS  Google Scholar 

  • Fehrenbach E, Niess AM, Veith R, Dickhuth HH, Northoff H (2001) Changes of HSP72-expression in leukocytes are associated with adaptation to exercise under conditions of high environmental temperature. J Leukoc Biol 69:747–754

    PubMed  CAS  Google Scholar 

  • Fehrenbach E, Niess AM, Voelker K, Northoff H, Mooren FC (2005) Exercise intensity and duration affect blood soluble HSP72. Int J Sports Med 26:552–557

    Article  PubMed  CAS  Google Scholar 

  • Fernandes MOB T (1994) Structure and regulation of heat shock gene promoters. In: Morimoto RIT A, Georgopoulos C (eds) The biology of heat shock proteins and molecular chaperones. Cold Spring Harbour Laboratory Press, New York, pp 417–455

  • Garrido C, Gurbuxani S, Ravagnan L, Kroemer G (2001) Heat shock proteins: endogenous modulators of apoptotic cell death. Biochem Biophys Res Commun 286:433–442

    Article  PubMed  CAS  Google Scholar 

  • Gjovaag TF, Dahl HA (2006) Effect of training and detraining on the expression of heat shock proteins in m. triceps brachii of untrained males and females. Eur J Appl Physiol 98:310–322

    Article  PubMed  CAS  Google Scholar 

  • Guttman SD, Glover CV, Allis CD, Gorovsky MA (1980) Heat shock, deciliation and release from anoxia induce the synthesis of the same set of polypeptides in starved T. pyriformis. Cell 22:299–307

    Article  PubMed  CAS  Google Scholar 

  • Hamilton KL, Powers SK, Sugiura T, Kim S, Lennon S, Tumer N, Mehta JL (2001) Short-term exercise training can improve myocardial tolerance to I/R without elevation in heat shock proteins. Am J Physiol Heart Circ Physiol 281:H1346–H1352

    PubMed  CAS  Google Scholar 

  • Harris MB, Starnes JW (2001) Effects of body temperature during exercise training on myocardial adaptations. Am J Physiol Heart Circ Physiol 280:H2271–H2280

    PubMed  CAS  Google Scholar 

  • Horowitz M, Maloyan A, Shlaier J (1997) HSP 70 kDa dynamics in animals undergoing heat stress superimposed on heat acclimation. Ann N Y Acad Sci 813:617–619

    Article  PubMed  CAS  Google Scholar 

  • Hoshida S, Yamashita N, Otsu K, Hori M (2002) Repeated physiologic stresses provide persistent cardioprotection against ischemia-reperfusion injury in rats. J Am Coll Cardiol 40:826–831

    Article  PubMed  Google Scholar 

  • Hung CH, Chang NC, Cheng BC, Lin MT (2005) Progressive exercise preconditioning protects against circulatory shock during experimental heatstroke. Shock Augusta Ga 23:426–433

    Article  Google Scholar 

  • Johnston RN, Kucey BL (1988) Competitive inhibition of hsp70 gene expression causes thermosensitivity. Science 242:1551–1554

    Article  PubMed  CAS  Google Scholar 

  • Kabakov A (1997) Heat shock proteins and cytoprotection. In: ATP-deprived mammalian cells. Springer, Heidelberg

  • Katschinski DM (2004) On heat and cells and proteins. News Physiol Sci 19:11–15

    PubMed  CAS  Google Scholar 

  • Kiang JG, Tsokos GC (1998) Heat shock protein 70 kDa: molecular biology, biochemistry, and physiology. Pharmacol Ther 80:183–201

    Article  PubMed  CAS  Google Scholar 

  • Kim KB, Kim MH, Lee DJ (2004) The effect of exercise in cool, control and hot environments on cardioprotective HSP70 induction. J Physiol Anthropol Appl Human Sci 23:225–230

    Article  PubMed  Google Scholar 

  • Kregel KC, Moseley PL (1996) Differential effects of exercise and heat stress on liver HSP70 accumulation with aging. J Appl Physiol 80:547–551

    PubMed  CAS  Google Scholar 

  • Kukreja RC, Kontos MC, Loesser KE, Batra SK, Qian YZ, Gbur CJ Jr, Naseem SA, Jesse RL, Hess ML (1994) Oxidant stress increases heat shock protein 70 mRNA in isolated perfused rat heart. Am J Physiol 267:H2213–H2219

    PubMed  CAS  Google Scholar 

  • Landry J, Bernier D, Chretien P, Nicole LM, Tanguay RM, Marceau N (1982) Synthesis and degradation of heat shock proteins during development and decay of thermotolerance. Cancer Res 42:2457–2461

    PubMed  CAS  Google Scholar 

  • Landry J, Chretien P, Lambert H, Hickey E, Weber LA (1989) Heat shock resistance conferred by expression of the human HSP27 gene in rodent cells. J Cell Biol 109:7–15

    Article  PubMed  CAS  Google Scholar 

  • Li GC, Meyer JL, Mak JY, Hahn GM (1983) Heat-induced protection of mice against thermal death. Cancer Res 43:5758–5760

    PubMed  CAS  Google Scholar 

  • Lindquist S, Craig EA (1988) The heat-shock proteins. Annu Rev Genet 22:631–677

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Lormes W, Wang L, Reissnecker S, Steinacker JM (2004) Different skeletal muscle HSP70 responses to high-intensity strength training and low-intensity endurance training. Eur J Appl Physiol 91:330–335

    Article  PubMed  CAS  Google Scholar 

  • Locke M, Noble EG (1995) Stress proteins: the exercise response. Can J Appl Physiol 20:155–167

    PubMed  CAS  Google Scholar 

  • Locke M, Noble EG, Atkinson BG (1990) Exercising mammals synthesize stress proteins. Am J Physiol 258:C723–729

    PubMed  CAS  Google Scholar 

  • Locke M, Noble EG, Tanguay RM, Feild MR, Ianuzzo SE, Ianuzzo CD (1995) Activation of heat-shock transcription factor in rat heart after heat shock and exercise. Am J Physiol 268:C1387–C1394

    PubMed  CAS  Google Scholar 

  • Lovell R, Madden LA, McNaughton L, Caroll S (2007) Effects of passive hyperthermia on Heat Shock Protein 70. Amino Acids (in press)

  • Maloyan A, Palmon A, Horowitz M (1999) Heat acclimation increases the basal HSP72 level and alters its production dynamics during heat stress. Am J Physiol 276:R1506–R1515

    PubMed  CAS  Google Scholar 

  • Marber MS, Mestril R, Chi SH, Sayen MR, Yellon DM, Dillmann WH (1995) Overexpression of the rat inducible 70-kD heat stress protein in a transgenic mouse increases the resistance of the heart to ischemic injury. J Clin Invest 95:1446–1456

    Article  PubMed  CAS  Google Scholar 

  • Marshall HC, Ferguson RA, Nimmo MA (2006) Human resting extracellular heat shock protein 72 concentration decreases during the initial adaptation to exercise in a hot, humid environment. Cell Stress Chaperones 11:129–134

    Article  PubMed  CAS  Google Scholar 

  • McArdle A, Pattwell D, Vasilaki A, Griffiths RD, Jackson MJ (2001) Contractile activity-induced oxidative stress: cellular origin and adaptive responses. Am J Physiol Cell Physiol 280:C621–C627

    PubMed  CAS  Google Scholar 

  • McClung JP, Hasday JD, He JR, Montain SJ, Cheuvront SN, Sawka MN, Singh IS (2007) Exercise-heat acclimation in humans alters baseline levels and ex vivo heat inducibility of HSP72 and HSP90 in peripheral blood mononuclear cells. Am J Physiol Regul Integr Comp Physiol (in press)

  • Melling CW, Thorp DB, Milne KJ, Krause MP, Noble EG (2007) Exercise-mediated regulation of Hsp70 expression following aerobic exercise training. Am J Physiol Heart Circ Physiol (in press)

  • Milne KJ, Noble EG (2002) Exercise-induced elevation of HSP70 is intensity dependent. J Appl Physiol 93:561–568

    PubMed  CAS  Google Scholar 

  • Mizzen LA, Welch WJ (1988) Characterization of the thermotolerant cell. I. Effects on protein synthesis activity and the regulation of heat-shock protein 70 expression. J Cell Biol 106:1105–1116

    Article  PubMed  CAS  Google Scholar 

  • Mocanu MM, Steare SE, Evans MC, Nugent JH, Yellon DM (1993) Heat stress attenuates free radical release in the isolated perfused rat heart. Free Radic Biol Med 15:459–463

    Article  PubMed  CAS  Google Scholar 

  • Morton JP, MacLaren DP, Cable NT, Bongers T, Griffiths RD, Campbell IT, Evans L, Kayani A, McArdle A, Drust B. (2006). Time course and differential responses of the major heat shock protein families in human skeletal muscle following acute nondamaging treadmill exercise. J Appl Physiol 101:176–182

    Article  PubMed  CAS  Google Scholar 

  • Noble E (2002) Heat shock proteins and their induction with exercise. In: Locke MN E (ed) Exercise and stress response, CRC, Boca Raton, pp 43–78

  • Palleros DR, Welch WJ, Fink AL (1991) Interaction of hsp70 with unfolded proteins: effects of temperature and nucleotides on the kinetics of binding. Proc Natl Acad Sci USA 88:5719–5723

    Article  PubMed  CAS  Google Scholar 

  • Patel B, Khaliq A, Jarvis-Evans J, Boulton M, Arrol S, Mackness M, McLeod D (1995) Hypoxia induces HSP 70 gene expression in human hepatoma (HEP G2) cells. Biochem Mol Biol Int 36:907–912

    PubMed  CAS  Google Scholar 

  • Paulsen G, Vissing K, Kalhovde JM, Ugelstad I, Bayer ML, Kadi F, Schjerling P, Hallen J, Raastad T (2007) Maximal eccentric exercise induces a rapid accumulation of small heat shock proteins on myofibrils and a delayed HSP70 response in humans. Am J Physiol Regul Integr Comp Physiol 293: R844–R853

    PubMed  CAS  Google Scholar 

  • Pelham HR (1986) Speculations on the functions of the major heat shock and glucose-regulated proteins. Cell 46:959–961

    Article  PubMed  CAS  Google Scholar 

  • Perdrizet G (1997) The heat shock response. In: Heat shock response and organ preservation: models of stress conditioning. Springer, Heidelberg, pp 27–69

  • Powers SK, Demirel HA, Vincent HK, Coombes JS, Naito H, Hamilton KL, Shanely RA, Jessup J (1998) Exercise training improves myocardial tolerance to in vivo ischemia-reperfusion in the rat. Am J Physiol 275:R1468–R1477

    PubMed  CAS  Google Scholar 

  • Puntschart A, Vogt M, Widmer HR, Hoppeler H, Billeter R (1996) Hsp70 expression in human skeletal muscle after exercise. Acta Physiol Scand 157:411–417

    Article  PubMed  CAS  Google Scholar 

  • Rabindran SK, Haroun RI, Clos J, Wisniewski J, Wu C (1993) Regulation of heat shock factor trimer formation: role of a conserved leucine zipper. Science 259:230–234

    Article  PubMed  CAS  Google Scholar 

  • Richard V, Kaeffer N, Thuillez C (1996) Delayed protection of the ischemic heart-from pathophysiology to therapeutic applications. Fundam Clin Pharmacol 10:409–415

    Article  PubMed  CAS  Google Scholar 

  • Ritossa F (1962) A new puffing pattern induced by temperature shock and DNP in Drosophila. Experientia 18:571–573

    Article  CAS  Google Scholar 

  • Ryan AJ, Gisolfi CV, Moseley PL (1991) Synthesis of 70 K stress protein by human leukocytes: effect of exercise in the heat. J Appl Physiol 70:466–471

    PubMed  CAS  Google Scholar 

  • Salo DC, Donovan CM, Davies KJ (1991) HSP70 and other possible heat shock or oxidative stress proteins are induced in skeletal muscle, heart, and liver during exercise. Free Radic Biol Med 11:239–246

    Article  PubMed  CAS  Google Scholar 

  • Samelman TR (2000) Heat shock protein expression is increased in cardiac and skeletal muscles of Fischer 344 rats after endurance training. Exp Physiol 85:92–102

    Article  PubMed  CAS  Google Scholar 

  • Sandström ME, Siegler JC, Lovell RJ, Madden LA, McNaughton L (2007) The effect of 15 consecutive days of heat-exercise acclimation on heat shock protein 70. Cell Stress Chaperones (in press)

  • Sciandra JJ, Subjeck JR (1983) The effects of glucose on protein synthesis and thermosensitivity in Chinese hamster ovary cells. J Biol Chem 258:12091–12093

    PubMed  CAS  Google Scholar 

  • Skidmore R, Gutierrez JA, Guerriero V Jr, Kregel KC (1995) HSP70 induction during exercise and heat stress in rats: role of internal temperature. Am J Physiol 268:R92–R97

    PubMed  CAS  Google Scholar 

  • Slakey DP, Roza AM, Pieper GM, Johnson CP, Adams MB (1993) Delayed cardiac allograft rejection due to combined cyclosporine and antioxidant therapy. Transplantation 56:1305–1309

    Article  PubMed  CAS  Google Scholar 

  • Snoeckx LH, Cornelussen RN, Van Nieuwenhoven FA, Reneman RS, Van Der Vusse GJ (2001) Heat shock proteins and cardiovascular pathophysiology. Physiol Rev 81:1461–1497

    PubMed  CAS  Google Scholar 

  • Taylor RP, Harris MB, Starnes JW (1999) Acute exercise can improve cardioprotection without increasing heat shock protein content. Am J Physiol 276:H1098–H1102

    PubMed  CAS  Google Scholar 

  • Thompson HS, Clarkson PM, Scordilis SP (2002) The repeated bout effect and heat shock proteins: intramuscular HSP27 and HSP70 expression following two bouts of eccentric exercise in humans. Acta Physiol Scand 174:47–56

    Article  PubMed  CAS  Google Scholar 

  • Tupling AR, Bombardier E, Stewart RD, Vigna C, Aqui AE (2007) Muscle Fiber Type Specific Response of Hsp70 Expression in Human Quadriceps Following Acute Isometric Exercise. J Appl Physiol

  • Walsh RC, Koukoulas I, Garnham A, Moseley PL, Hargreaves M, Febbraio MA (2001) Exercise increases serum Hsp72 in humans. Cell Stress Chaperones 6:386–393

    Article  PubMed  CAS  Google Scholar 

  • Watkins AM, Cheek DJ, Harvey AE, Goodwin JD, Blair KE, Mitchell JB (2007) Heat shock protein (HSP-72) levels in skeletal muscle following work in heat. Aviat Space Environ Med 78:901–905

    PubMed  CAS  Google Scholar 

  • Whitham M, Laing SJ, Jackson A, Maassen N, Walsh NP (2007) Effect of exercise with and without a thermal clamp on the plasma heat shock protein 72 response. J Appl Physiol 103:1251–1256

    Article  PubMed  CAS  Google Scholar 

  • Wu BJ, Kingston RE, Morimoto RI (1986) Human HSP70 promoter contains at least two distinct regulatory domains. Proc Natl Acad Sci USA 83:629–633

    Article  PubMed  CAS  Google Scholar 

  • Yamada PM, Amorim FT, Moseley P, Robergs R, Schneider SM (2007) Effect of heat acclimation on heat shock protein 72 and interleukin-10 in humans. J Appl Physiol 103:1196–1204

    Article  PubMed  CAS  Google Scholar 

  • Yang XM, Baxter GF, Heads RJ, Yellon DM, Downey JM, Cohen MV (1996) Infarct limitation of the second window of protection in a conscious rabbit model. Cardiovasc Res 31:777–783

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leigh A. Madden.

Additional information

L. A. Madden and M. E. Sandström are contributed equally to the manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Madden, L.A., Sandström, M.E., Lovell, R.J. et al. Inducible heat shock protein 70 and its role in preconditioning and exercise. Amino Acids 34, 511–516 (2008). https://doi.org/10.1007/s00726-007-0004-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-007-0004-7

Keywords

Navigation