Advertisement

Amino Acids

, Volume 32, Issue 4, pp 535–542 | Cite as

EPR spin-trapping of protein radicals to investigate biological oxidative mechanisms

  • O. Augusto
  • S. Muntz Vaz
Review Article

Summary.

Presently, free radicals and oxidants are considered to mediate from signaling circuits involved in physiology and pathology to cell and tissue injury. The elucidation of these many inter-related processes requires a better understanding of cellular oxidative mechanisms many of which are mediated by protein radicals. Here, we will discuss the potentialities of EPR spin-trapping of protein radicals to unravel oxidative mechanisms. An overview of the methodology and its application to identify protein residues that are the target of specific oxidants, characterize emerging oxidants, and discriminate radical from non radical mechanisms will be presented. The examples are based on work developed in our laboratories but will be discussed in a broad scenario to emphasize that simple experiments can provide relevant insights into the biological reactivity of known and emerging biological oxidants and into signaling mechanisms.

Keywords: Oxidative mechanisms – Protein radicals – EPR – EPR spin-trapping 

Abbreviations:

BSA

bovine serum albumin

Cu,Zn-SOD

superoxide dismutase

DBNBS

3,5-dibromo-4-nitrosobenzenesulfonic acid

DMPO

5,5-dimethylpyrroline N-oxide

EPR

electron paramagnetic resonance

ESI

electrospray ionization

GSH

glutathione

Hb

hemoglobin

HCO4

peroxycarbonate or peroxymonocarbonate

HSA

human serum albumin

LC

liquid chromatography

MALDI-TOF

matrix-assisted laser desorption/ionization time of flight

MNP

2-methyl-2-nitrosopropane

MS

mass spectrometry

PBN

phenyl-N-t-butylnitrone

Peroxynitrite

sum of peroxynitrite anion (ONOO, oxoperoxonitrate (−1)) and peroxynitrous acid (ONOOH, hydrogen oxoperoxonitrate) unless specified

RNS

reactive nitrogen species

ROS

reactive oxygen species

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arai, H, Berlett, BS, Chock, PB, Stadtman, ER 2005Effect of bicarbonate on iron-mediated oxidation of low-density lipoproteinProc Natl Acad Sci USA1021047210477PubMedCrossRefGoogle Scholar
  2. Aslund, F, Beckwith, J 1999Bridge over troubled waters: sensing stress by dissulfide bond formationCell96751753PubMedCrossRefGoogle Scholar
  3. Augusto, O, Bonini, MG, Amanso, AM, Linares, E, Santos, CXC, Lopes de Menezes, S 2002aNitrogen dioxide and carbonate radical anion: two emerging radicals in biologyFree Rad Biol Med32841859CrossRefGoogle Scholar
  4. Augusto, O, Lopes de Menezes, S, Linares, E, Romero, N, Radi, R, Denicola, A 2002bEPR detection of glutathiyl and hemoglobin – cysteinyl radicals during the interaction of peroxynitrite with human erythrocytesBiochemistry411432314328CrossRefGoogle Scholar
  5. Augusto, O, Bonini, MG, Trindade, DF 2004Spin trapping of glutathiyl and protein radicals produced from nitric oxide-derived oxidantsFree Rad Biol Med3612241232PubMedCrossRefGoogle Scholar
  6. Badouard, C, Masuda, M, Nishino, H, Cadet, J, Favier, A, Ravanat, JL 2005Detection of chlorinated DNA and RNA nucleosides by HPLC coupled to tandem mass spectrometry as potential biomarkers of inflammationJChromatogr B Analyt Technol Biomed Life Sci8272631CrossRefGoogle Scholar
  7. Barrows, TP, Bhaskar, B, Poulos, TL 2004Electrostatic control of the tryptophan radical in cytochrome c peroxidaseBiochemistry4388268834PubMedCrossRefGoogle Scholar
  8. Bonini, MG, Augusto, O 2001Carbon dioxide stimulates the production of thiyl, sulfinyl, and disulfide radical anion from thiol oxidation by peroxynitriteJ Biol Chem27697499754PubMedCrossRefGoogle Scholar
  9. Bonini, MG, Miyamoto, S, Di Mascio, P, Augusto, O 2004aProduction of the carbonate radical anion during xanthine oxidase turnover in the presence of bicarbonateJ Biol Chem2795183651843CrossRefGoogle Scholar
  10. Bonini, MG, Fernandes, DC, Augusto, O 2004bAlbumin oxidation to diverse radicals by the peroxidase activity of Cu,Zn-superoxide dismutase in the presence of bicarbonate or nitrite: diffusible radicals produce cysteinyl and solvent-exposed and -unexposed tyrosyl radicalsBiochemistry43344351CrossRefGoogle Scholar
  11. Bryan, NS, Rassaf, T, Maloney, RE, Rodriguez, CM, Saijo, F, Rodriguez, JR, Feelisch, M 2004Cellular targets and mechanisms of nitros(yl)ation: An insight into their nature and kinetics in vivoProc Natl Acad Sci USA10143084313PubMedCrossRefGoogle Scholar
  12. Carballal, S, Radi, R, Kirk, MC, Barnes, S, Freeman, BA, Alvarez, B 2003Sulfenic acid formation in human serum albumin by hydrogen peroxide and peroxynitriteBiochemistry4299069914PubMedCrossRefGoogle Scholar
  13. Clairbone, AL, Miller, H, Parsonage, D, Ross, PR 1993Protein-sulfenic acid stabilization and function in enzyme catalysis and gene regulationFASEB J714831490Google Scholar
  14. Dalle-Donne, I, Scaloni, A, Giustarini, D, Cavarra, E, Tell, G, Lungarella, G, Colombo, R, Rossi, R, Milzani, A 2004Proteins as biomarkers of oxidative/nitrosative stress in diseases: The contribution of redox proteomicsMass Spectrom Rev245599CrossRefGoogle Scholar
  15. Davies, MJ, Hawkins, CL 2004EPR spin-trapping of protein radicalsFree Radic Biol Med3610721086PubMedCrossRefGoogle Scholar
  16. Davies, MJ, Fu, S, Wang, H, Dean, RT 1999Stable markers of oxidant damage to proteins and their application in the study of human diseaseFree Radic Biol Med2711511163PubMedCrossRefGoogle Scholar
  17. Deterding, LJ, Ramirez, DC, Dubin, JR, Mason, RP, Tomer, KB 2004Identification of free radicals on hemoglobin from its self-peroxidation using mass spectrometry and immuno-spin trapping: observation of a histidinyl radicalJ Biol Chem2791160011607PubMedCrossRefGoogle Scholar
  18. Elam, JS, Malek, K, Rodriguez, JA, Doucette, PA, Taylor, AB, Hayward, LJ, Cabelli, DE, Valentine, JS, Hart, PJ 2003An alternative mechanism of bicarbonate-mediated peroxidation by copper-zinc superoxide dismutase: rates enhanced via proposed enzyme-associated peroxycarbonate intermediateJ Biol Chem2782103221039PubMedCrossRefGoogle Scholar
  19. Espey, MG, Thomas, DD, Miranda, KM, Wink, DA 2002Focusing of nitric oxide mediated nitrosation and oxidative nitrosylation as a consequence of reaction with superoxideProc Natl Acad Sci USA991112711132PubMedCrossRefGoogle Scholar
  20. Fernandes, DC, Medinas, DB, Alves, MJM, Augusto, O 2005Tempol diverts peroxynitrite/carbon dioxide reactivity toward albumin and cells from protein-tyrosine nitration to protein-cysteine nitrosationFree Radic Biol Med38189200PubMedCrossRefGoogle Scholar
  21. Finkel, T, Holbrook, NJ 2000Oxidants, oxidative stress and the biology of ageingNature408239247PubMedCrossRefGoogle Scholar
  22. Gatti, RM, Radi, R, Augusto, O 1994Peroxynitrite-mediated oxidation of albumin to the protein thiyl free radicalFEBS Lett348287290PubMedCrossRefGoogle Scholar
  23. Georgiou, G, Masip, L 2003An overoxidation journey with a return ticketScience300592594PubMedCrossRefGoogle Scholar
  24. Gilbert, DL, Colton, CA 1999Reactive oxygen species in biological systems: an interdisciplinary approachKluwer AcademicNew YorkGoogle Scholar
  25. Halliwell, BGutteridge, JMC eds. 1999Free radicals in biology and medicineOxford University PressNew YorkGoogle Scholar
  26. Heo, J, Gao, G, Campbell, SL 2004pH-dependent perturbation of Ras-guanine nucleotide interactions and Ras guanine nucleotide exchangeBiochemistry431010210111PubMedCrossRefGoogle Scholar
  27. Heo, J, Prutzman, KC, Mocanu, V, Campbell, SL 2005aMechanism of free radical nitric oxide-mediated Ras guanine nucleotide dissociationJ Mol Biol34614231440CrossRefGoogle Scholar
  28. Heo, J, Thapar, R, Campbell, SL 2005bRecognition and activation of Rho GTPases by Vav1 and Vav2 guanine nucleotide exchange factorsBiochemistry4465736585CrossRefGoogle Scholar
  29. Ignarro, LJ 1990Biosynthesis and metabolism of endothelium-derived nitric oxideAnnu Rev Pharmacol Toxicol30535560PubMedCrossRefGoogle Scholar
  30. Jourd’heuil, D, Jourd’heuil, FL, Feelisch, M 2003Oxidation and nitrosation of thiols at low micromolar exposure to nitric oxide. Evidence for a free radical mechanismJ Biol Chem2781572015726PubMedCrossRefGoogle Scholar
  31. Kadiiska, MB, Gladen, BC, Baird, DD, Germolec, D, Graham, LB, Parker, CE, Nyska, A, Wachsman, JT, Ames, BN, Basu, S, Brot, N, Fitzgerald, GA, Floyd, RA, George, M, Heinecke, JW, Hatch, GE, Hensley, K, Lawson, JA, Marnett, LJ, Morrow, JD, Murray, DM, Plastaras, J, Roberts, LJ,2nd, Rokach, J, Shigenaga, MK, Sohal, RS, Sun, J, Tice, RR, Van Thiel, DH, Wellner, D, Walter, PB, Tomer, KB, Mason, RP, Barrett, JC 2005aBiomarkers of oxidative stress study II: are oxidation products of lipids, proteins, and DNA markers of CCl4 poisoning?Free Radic Biol Med38698710CrossRefGoogle Scholar
  32. Kadiiska, MB, Gladen, BC, Baird, DD, Graham, LB, Parker, CE, Ames, BN, Basu, S, Fitzgerald, GA, Lawson, JA, Marnett, LJ, Morrow, JD, Murray, DM, Plastaras, J, Roberts, LJ,2nd, Rokach, J, Shigenaga, MK, Sun, J, Walter, PB, Tomer, KB, Barrett, JC, Mason, RP 2005bBiomarkers of oxidative stress study III. Effects of the nonsteroidal anti-inflammatory agents indomethacin and meclofenamic acid on measurements of oxidative products of lipids in CCl4 poisoningFree Radic Biol Med38711718CrossRefGoogle Scholar
  33. Knecht, KT, Mason, RP 1993In vivo spin-trapping of xenobiotic free radical metabolitesArch Biochem Biophys303185194PubMedCrossRefGoogle Scholar
  34. Kris-Etherton, PM Lichtenstein, AH Howard, BV Steinberg, D Witztum, JL Nutrition Committee of the American Heart Association Council onNutrition, Physical Activity, and Metabolism2004Antioxidant vitamin supplements and cardiovascular diseaseCirculation110637641PubMedCrossRefGoogle Scholar
  35. Liochev, SI, Fridovich, I 2005The role of CO2 in cobalt-catalyzed peroxidationsArch Biochem Biophys43999104PubMedCrossRefGoogle Scholar
  36. Liochev, SI, Fridovich, I 2004Carbon dioxide mediates Mn(II)-catalyzed decomposition of hydrogen peroxide and peroxidation reactionsProc Natl Acad Sci USA1011248512490PubMedCrossRefGoogle Scholar
  37. Mason, RP 2004Using anti-5,5-dimethyl-1-pyrroline N-oxide (anti-DMPO) to detect protein radicals in time and space with immuno-spin trappingFree Radic Biol Med3612141223PubMedCrossRefGoogle Scholar
  38. Moncada, S, Palmer, RM, Higgs, EA 1991Nitric oxide: physiology, pathophysiology, and pharmacologyPharmacol Rev43109142PubMedGoogle Scholar
  39. Morrow, JD 2005Quantification of isoprostanes as indices of oxidant stress and the risk of atherosclerosis in humansArterioscler Thromb Vasc Biol25279286PubMedCrossRefGoogle Scholar
  40. Radi, R, Denicola, A, Alvarez, B, Ferrer-Sueta, G, Rubbo, H 2000The biological chemistry of peroxynitriteIgnarro, LJ eds. Nitric oxide: biology and pathobiologyAcademic PressNew York5789Google Scholar
  41. Radi, R 2004Nitric oxide, oxidants, and protein tyrosine nitrationProc Natl Acad Sci USA10140034008PubMedCrossRefGoogle Scholar
  42. Ramirez, DC, Mejiba, SE, Mason, RP 2005Copper-catalyzed protein oxidation and its modulation by carbon dioxide: enhancement of protein radicals in cellsJ Biol Chem2802740227411PubMedCrossRefGoogle Scholar
  43. Richardson, DE, Regino, CA, Yao, H, Johnson, JV 2003Methionine oxidation by peroxymonocarbonate, a reactive oxygen species formed from CO2/bicarbonate and hydrogen peroxideFree Radic Biol Med3515381550PubMedCrossRefGoogle Scholar
  44. Richardson, DE, Yao, H, Frank, KM, Bennett, DA 2000Equilibria, kinetics, and mechanisms in the bicarbonate activation of hydrogen peroxide: oxidation of sulfites by peroxymonocarbonateJ Am Chem Soc12217291739CrossRefGoogle Scholar
  45. Romero, N, Radi, R, Linares, E, Augusto, O, Detweiler, CP, Mason, RP, Denicola, A 2003Reaction of human hemoglobin with peroxynitrite: isomerization to nitrate and secondary formation of protein radicalsJ Biol Chem2784404944057PubMedCrossRefGoogle Scholar
  46. Sies, H, Mehlhom, R 1986Mutagenicity of nitroxide-free radicalsArch Biochem Biophys251393396PubMedCrossRefGoogle Scholar
  47. Shishehbor, MH, Aviles, RJA, Brennan, ML, Fu, X, Goormastic, M, Pearce, GL, Gokce, N, Keaney, JF, Penn, MS, Sprecher, DL, Vita, JA, Hazen, SL 2003Association of nitrotyrosine levels with cardiovascular disease and modulation by statin therapyJ Am Med Assoc28916751680CrossRefGoogle Scholar
  48. Stamler, JS 1994Redox signaling: nitrosylation and related target interactions of nitric oxideCell78931936PubMedCrossRefGoogle Scholar
  49. Stamler, JS 1995S-Nitrosothiols and the bioregulatory actions of nitrogen oxides through reactions with thiol groupsCurr Top Microbiol Immunol1961936PubMedGoogle Scholar
  50. Stone, JR 2004An assessment of proposed mechanisms for sensing hydrogen peroxide in mammalian systemsArch Biochem Biophys422119124PubMedCrossRefGoogle Scholar
  51. Stubbe, J, van der Donk, W 1998Protein radicals in enzyme catalysisChem Rev98705762PubMedCrossRefGoogle Scholar
  52. Torres, M, Forman, HJ 2003Redox signaling and the MAP kinase pathwaysBiofactors17287296PubMedGoogle Scholar
  53. Vasquez-Vivar, J, Santos, AM, Junqueira, VBC, Augusto, O 1996Peroxynitrite-mediated formation of free radicals in human plasma: EPR detection of ascorbyl, albumin-thiyl and uric acid-derived free radicalsBiochem J314869876PubMedGoogle Scholar
  54. Woo, HA, Chae, HZ, Hwang, SC, Yang, K-S, Kang, SW, Kim, K, Rhee, SG 2003Reversing the inactivation of peroxiredoxins caused by cysteine sulfinic acid formationScience300653656PubMedCrossRefGoogle Scholar
  55. Wood, ZA, Poole, LB, Karplus, PA 2003Peroxiredoxin evolution and the regulation of hydrogen peroxide signalingScience300650653PubMedCrossRefGoogle Scholar
  56. Yao, H, Richardson, DE 2003Bicarbonate surfoxidants: micellar oxidations of aryl sulfides with bicarbonate-activated hydrogen peroxideJ Am Chem Soc12562116221PubMedCrossRefGoogle Scholar
  57. Zhang, H, Andrekopoulos, C, Joseph, J, Crow, J, Kalyanaraman, B 2004The carbonate radical anion-induced covalent aggregation of human copper, zinc superoxide dismutase, and alpha-synuclein: intermediacy of tryptophan- and tyrosine-derived oxidationFree Radic Biol Med3613551365PubMedCrossRefGoogle Scholar
  58. Zhang, H, Xu, Y, Joseph, J, Kalyanaraman, B 2005Intramolecular electron transfer between tyrosyl radical and cysteine residue inhibits tyrosine nitration and induces thiyl radical formation in model peptides treated with myeloperoxidase, H2O2, and NO2 : EPR spin trapping studiesJ Biol Chem2804068440698PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • O. Augusto
    • 1
  • S. Muntz Vaz
    • 1
  1. 1.Departamento de Bioquímica, Instituto de QuímicaUniversidade de São PauloSão PauloBrazil

Personalised recommendations