Amino Acids

, Volume 32, Issue 4, pp 593–602 | Cite as

Kinetic and proteomic analyses of S-nitrosoglutathione-treated hexokinase A: consequences for cancer energy metabolism

  • S. Miller
  • C. Ross-Inta
  • C. Giulivi


Mammalian hexokinase (HXK) is found at the outer mitochondrial membrane, exposed to mitochondrial oxygen- and nitrogen-radicals. Given the important role of this enzyme in metabolic pathways and diseases, the effect of S-nitrosoglutathione (GSNO) on HXK A structure and activity was studied. To focus on the catalytic domain, yeast HXK A was used because it has a significant homology to the mammalian domain that contains both the regulatory and catalytic sites. Biologically relevant [GSNO]/[HXK] caused a significant decrease in Vmax with glucose (but not with fructose), along with oxidation of 5 Met and nitration of 4 Tyr. Preincubation of HXK with glucose abrogated the effect of GSNO whereas fructose was ineffective. These results are interpreted by considering the tight binding of glucose to the enzyme as opposed to that of fructose. The segment comprised from amino acids 304 to 306 contained the most modifications. Given that this sequence is highly conserved in HXK from various species, a decline in activity is expected when a high-affinity substrate is presented.

Considering that changes in primary structure are envisioned at high [GSNO]/[HXK] ratios, like those present under normal conditions, it could be hypothesized that the high concentration of hexokinase present in fast growing tumors may serve not only to sustain high glycolysis rates, but also to minimize protein damage that might result in activity decline, compromising energy metabolism.

Keywords: Nitrosoglutathione – Hexokinase – Structure – Activity – Oxygen radicals – Nitrogen radicals – Proteomics – Tumor – Glycolysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, CM, Stenkamp, RE, McDonald, RC, Steitz, TA 1978A refined model of the sugar binding site of yeast hexokinase BJ Mol Biol123207219PubMedCrossRefGoogle Scholar
  2. Andreone, TL, Printz, RL, Pilkis, SJ, Magnuson, MA, Granner, DK 1989The amino acid sequence of rat liver glucokinase deduced from cloned cDNAJ Biol Chem264363369PubMedGoogle Scholar
  3. Arora, KK, Pedersen, PL 1988Functional significance of mitochondrial bound hexokinase in tumor cell metabolism. Evidence for preferential phosphorylation of glucose by intramitochondrially generated ATPJ Biol Chem2631742217428PubMedGoogle Scholar
  4. Arora, KK, Fanciulli, M, Pedersen, PL 1990Glucose phosphorylation in tumor cells. Cloning, sequencing, and overexpression in active form of a full-length cDNA encoding a mitochondrial bindable form of hexokinaseJ Biol Chem26564816488PubMedGoogle Scholar
  5. Arora, KK, Filburn, CR, Pedersen, PL 1991Glucose phosphorylation. Site-directed mutations which impair the catalytic function of hexokinaseJ Biol Chem26653595362PubMedGoogle Scholar
  6. Arora, KK, Filburn, CR, Pedersen, PL 1993Structure/function relationships in hexokinase. Site-directed mutational analyses and characterization of overexpressed fragments implicate different functions for the N- and C-terminal halves of the enzymeJ Biol Chem2681825918266PubMedGoogle Scholar
  7. Barrie, SE, Saad, EA, Ubatuba, S, Da Silva Lacaz, P, Harris, P 1979Myocardial enzyme activities in congestive cardiomyopathyRes Commun Chem Pathol Pharmacol23375381PubMedGoogle Scholar
  8. Bennett, WS,Jr, Steitz, TA 1978Glucose-induced conformational change in yeast hexokinaseProc Natl Acad Sci USA7548484852PubMedCrossRefGoogle Scholar
  9. Bennett, WS,Jr, Steitz, TA 1980Structure of a complex between yeast hexokinase A and glucose. II. Detailed comparisons of conformation and active site configuration with the native hexokinase B monomer and dimerJ Mol Biol140211230PubMedCrossRefGoogle Scholar
  10. Bustamante, E, Morris, HP, Pedersen, PL 1981Energy metabolism of tumor cells. Requirement for a form of hexokinase with a propensity for mitochondrial bindingJ Biol Chem25686998704PubMedGoogle Scholar
  11. Colowick, SP 1973HexokinasesBoyer, PD eds. Enzymes3Academic PressNew York148Google Scholar
  12. Darrow, RA, Colowick, SP 1962Hexokinase from baker’s yeastMethods Enzymol5226235CrossRefGoogle Scholar
  13. Elfering, SL, Sarkela, TM, Giulivi, C 2002Biochemistry of mitochondrial nitric-oxide synthaseJ Biol Chem2773807938086PubMedCrossRefGoogle Scholar
  14. Frohlich, K, Entian, K, Mecke, D 1985The primary structure of the yeast hexokinase PII gene (HXK2) which is responsible for glucose repressionGene (Amst)36105111Google Scholar
  15. Giulivi, C, Boveris, A, Cadenas, E 1999Oxygen radicals in mitochondria: critical evaluation of the methodology available for estimating steady-state concentrations of oxygen radicalsGilbert, DLColton, CA eds. Reactive oxygen species in biological systems: selected topicsPlenum PressNew York77102Google Scholar
  16. Giulivi, C 2003Characterization and function of mitochondrial nitric-oxide synthaseFree Radical Biol Med34397408CrossRefGoogle Scholar
  17. Gots, RE, Bessman, SP 1974The functional compartmentation of mitochondrial hexokinaseArch Biochem Biophys163714PubMedCrossRefGoogle Scholar
  18. Griffin, LD, Gelb, BD, Wheeler, DA, Davison, D, Adams, V, McCabe, ER 1991Mammalian hexokinase 1: evolutionary conservation and structure to function analysisGenomics1110141024PubMedCrossRefGoogle Scholar
  19. Gupta, BL, Nehal, M, Baquer, NZ 1997Effect of experimental diabetes on the activities of hexokinase, glucose-6-phosphate dehydrogenase and catecholamines in rat erythrocytes of different agesIndian J Exp Biol35792795PubMedGoogle Scholar
  20. Hart, T 1985Some observations concerning the S-nitroso and S-phenylsulfonyl derivatives of L-cysteine and glutathioneTetrahedron Lett2620132016CrossRefGoogle Scholar
  21. Johnson, MK 1960The intracellular distribution of glycolytic and other enzymes in rat-brain homogenates and mitochondrial preparationsBiochem J77610618PubMedGoogle Scholar
  22. Katzen, HM, Schimke, RT 1965Multiple forms of hexokinase in the rat: tissue distribution, age dependency, and propertiesProc Natl Acad Sci USA5412181225PubMedCrossRefGoogle Scholar
  23. Kopetzki, E, Entian, K, Mecke, D 1985Complete nucleotide sequence of the hexokinase PI gene (HXK1) of Saccharomyces cerevisiae Gene (Amst)3995102Google Scholar
  24. Kuser, PR, Krauchenco, S, Antunes, OAC, Polikarpov, I 2000The high resolution crystal structure of yeast hexokinase PII with the correct primary sequence provides new insights into its mechanism of actionJ Biol Chem2752081420821PubMedCrossRefGoogle Scholar
  25. Lazarus, NR, Ramel, Ah, Rustum, YM, Barnard, EA 1966Yeast hexokinase. I. Preparation of the pure enzymeBiochemistry540034016CrossRefGoogle Scholar
  26. Ma, H, Bloom, LM, Dakin, SE, Walsh, CT, Botstein, D 1989aThe 15 N-terminal amino acids of hexokinase II are not required for in vivo function: analysis of a truncated form of hexokinase II in Saccharomyces cerevisiae Proteins5218223CrossRefGoogle Scholar
  27. Ma, H, Bloom, LM, Zhu, Z, Walsh, CT, Botstein, D 1989bIsolation and characterization of mutations in the HXK2 gene of Saccharomyces cerevisiae Mol Cell Biol956305642Google Scholar
  28. Magnani, M, Stocchi, V, Cucchiarini, L, Novelli, G, Lodi, S, Isa, L, Fornaini, G 1985Hereditary nonspherocytic hemolytic anemia due to a new hexokinase variant with reduced stabilityBlood66690697PubMedGoogle Scholar
  29. McDonald, RC, Steitz, TA, Engelman, DM 1979Yeast hexokinase in solution exhibits a large conformational change upon binding glucose or glucose 6-phosphateBiochemistry18338342PubMedCrossRefGoogle Scholar
  30. Middleton, RJ 1990Hexokinases and glucokinasesBiochem Soc Trans18180183PubMedGoogle Scholar
  31. Mochizuki, Y, Hori, SH 1976Hexose 6-phosphate dehydrogenase in starfishesComp Biochem Physiol B54489494PubMedCrossRefGoogle Scholar
  32. Mochizuki, Y, Hori, SH 1977Purification and properties of hexokinase from the starfish, Asterias amurensis J Biochem (Tokyo)8118491855Google Scholar
  33. Otieno, S, Bhargava, AK, Barnard, EA, Ramel, AH 1975Yeast hexokinases. VIII. Essential thiols of yeast hexokinase. Alkylation by a substrate-like reagentBiochemistry1424032410PubMedCrossRefGoogle Scholar
  34. Parry, DM, Pedersen, PL 1983Intracellular localization and properties of particulate hexokinase in the Novikoff ascites tumor. Evidence for an outer mitochondrial membrane locationJ Biol Chem2581090410912PubMedGoogle Scholar
  35. Ramel, AH, Rustum, YM, Jones, JG, Barnard, EA 1971Yeast hexokinase. IV. Multiple forms of hexokinase in the yeast cellBiochemistry1034993508PubMedCrossRefGoogle Scholar
  36. Rose, IA, Warms, JV 1967Mitochondrial hexokinase. Release, rebinding, and locationJ Biol Chem24216351645PubMedGoogle Scholar
  37. Rustum, YM, Ramel, AH, Barnard, EA 1971The preparation of yeast hexokinasesPrep Biochem1309329PubMedGoogle Scholar
  38. Schwab, DA, Wilson, JE 1989Complete amino acid sequence of rat brain hexokinase, deduced from the cloned cDNA, and proposed structure of a mammalian hexokinaseProc Natl Acad Sci USA8625632567PubMedCrossRefGoogle Scholar
  39. Steffen, M, Sarkela, TM, Gybina, AA, Steele, TW, Traaseth, NJ, Kuehl, D, Giulivi, C 2001Metabolism of S-nitrosoglutathione in intact mitochondriaBiochem J356395402PubMedCrossRefGoogle Scholar
  40. Ureta, T 1982The comparative isozymology of vertebrate hexokinasesComp Biochem Physiol71B549555Google Scholar
  41. Valentine, WN, Oski, FA, Paglia, DE, Baughan, MA, Schneider, AS, Naiman, JL 1967Hereditary hemolytic anemia with hexokinase deficiency. Role of hexokinase in erythrocyte agingN Engl J Med276111PubMedCrossRefGoogle Scholar
  42. Vionnet, N, Stoffel, M, Takeda, J, Yasuda, K, Bell, GI, Zouali, H, Lesage, S, Velho, G, Iris, F, Passa, P, Froguel, P, Cohen, D 1992Nonsense mutation in the glucokinase gene causes early-onset non-insulin-dependent diabetes mellitusNature356721722PubMedCrossRefGoogle Scholar
  43. Warburg, O, Posener, K, Negelein, F 1924Metabolism of carcinoma cellsBiochem Z152309344Google Scholar
  44. White, TK, Wilson, JE 1987Rat brain hexokinase: location of the allosteric regulatory site in a structural domain at the N-terminus of the enzymeArch Biochem Biophys269402411CrossRefGoogle Scholar
  45. White, TK, Wilson, JE 1989Isolation and characterization of the discrete N- and C-terminal halves of rat brain hexokinase: retention of full catalytic activity in the isolated C-terminal halfArch Biochem Biophys274375393PubMedCrossRefGoogle Scholar
  46. Wilson, JE 2003Isozymes of mammalian hexokinase: structure, subcellular localization and metabolic functionJ Exp Biol20620492057PubMedCrossRefGoogle Scholar
  47. Womack, FC, Welch, MK, Nielsen, J, Colowick, SP 1973Purification and serological comparison of the yeast hexokinases P-I and P-IIArch Biochem Biophys158451457PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • S. Miller
    • 1
  • C. Ross-Inta
    • 1
  • C. Giulivi
    • 1
  1. 1.Department of Molecular BiosciencesUniversity of CaliforniaDavisU.S.A.

Personalised recommendations