Skip to main content
Log in

Characterization of tryptophan high affinity transport system in pinealocytes of the rat. Day-night modulation

  • Published:
Amino Acids Aims and scope Submit manuscript

Summary.

 Tryptophan is required in the pineal gland for the formation of serotonin, precursor of melatonin biosynthesis. The level of this amino acid in the serum and in the pineal gland of the rat undergoes a circadian rhythm, and reduced plasma tryptophan concentration decreases secretion of melatonin in humans. Tryptophan is transported into the cells by the long chain neutral amine acid system T and by the aromatic amino acid system T. The high affinity component of [3H]tryptophan uptake was studied in pinealocytes of the rat. Inhibition was observed in the presence of phenylalanine or tyrosine, but not in the presence of neutral amino acids, alanine, glycine, serine, lysine or by 2-aminobicyclo[2,2,1]-heptane-2-carboxylic acid, a substrate specific for system L. The transport of tryptophan was temperature-dependent and trans-stimulated by phenylalanine and tyrosine, but was energy-, sodium-, chloride-, and pH-independent. In addition, the sulphydryl agent N-ethylmaleimide did not modify the high affinity transport of tryptophan in pinealocytes. The kinetic parameters were not significantly different at 12:00 as compared to 24:00 h. The treatment with the inhibitor of tryptophan hydroxylase, p-chlorophenylalanine, produced an increase in the maximal velocity of the uptake and a reduction in the affinity at 12:00, but not at 24:00 h, probably indicating that during the day, the formation of serotonin in the pineal gland is favoured by elevating the uptake of tryptophan, whereas at 24:00 h other mechanisms, such as induction of enzymes are taking place. High affinity tryptophan uptake in the rat pineal gland occurs through system T and is upregulated during the day when the availability of serotonin is reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Arushanyan E, Beier E (1998) Relationships between the epiphysis and the hippocampus during formation of a stress response. Neurosci Behav Physiol 28: 608–612

    Article  PubMed  CAS  Google Scholar 

  • Attia AM, Mostafa MH, Richardson BA, Reiter RJ (1995a) Changes in nocturnal pineal indoleamine metabolism in rats treated with parathion are prevented by beta-adrenergic antagonist administration. Toxicology 97: 183–189

    Article  PubMed  CAS  Google Scholar 

  • Attia AM, Mostafa MH, Richardson BA, Retier RJ (1995b) Nighttime rise in rat pineal N-acetyltransferase due to carbaryl administration is reduced by propranolol treatment. Biomed Environ Sci 8: 45–53

    PubMed  CAS  Google Scholar 

  • Browntein M (1975) The pineal gland. Life Sci 16: 1363–1374 Boerner P, Saier MH (1985) Adaptive regulatory control of system A transport activity in a kidney epithelial cell line (MDCK) and in transformed variant (MDCK-T1). J Cell Physiol 122: 308–315

    Google Scholar 

  • Chen JG, Coe M, McAteer JA, Kempson SA (1996) Hypertonic activation and recovery of system A amino acid transport in renal MOCK cells. Am J Physiol 270 (3 Pt 2): F419–F424

    Google Scholar 

  • Christensen HN (1979) Exploiting amino acid structure to learn about membrane transport. Adv Enzymol 49: 41–101

    PubMed  CAS  Google Scholar 

  • Christensen H (1985) On the strategy of kinetic discrimination of amino acid transport systems. J Membr Biol 84: 97–103

    Article  PubMed  CAS  Google Scholar 

  • Christensen H (1989) Distinguishing amino acid transport systems of a given cell or tissue. Methods Enzymol 173: 576–616

    Article  PubMed  CAS  Google Scholar 

  • Christensen H (1990) Role of amino acid transport and counter transport in nutrition and metabolism. Physiol Rev 70: 43–77

    PubMed  CAS  Google Scholar 

  • Collarini EJ, Oxender DL (1987) Mechanisms of transport of amino acids across membranes. Annu Rev Nutr 7: 75–90

    Article  PubMed  CAS  Google Scholar 

  • Conradt M, Stofell W (1997) Inhibition of the high-affinity brain glutamate transporter GLAST-1 via direct phosphorylation. J Neurochem 68: 1244–1251

    Article  PubMed  CAS  Google Scholar 

  • Dam H, Meelerup ET, Rafaelsen OJ (1984) Diurnal variation of total plasma tryptophan in depressive patients. Acta Psychiatr Scand 69: 190–196

    Article  PubMed  CAS  Google Scholar 

  • Deguchi T (1977) Tryptophan hydroxylase in pineal gland of the rat, postsynaptic localization and absence of circadian change. J Neurochem 28: 667–668

    Article  PubMed  CAS  Google Scholar 

  • Dollins A, Zhdanova I, Wurtman R, Lynch H, Deng M (1994) Effect of inducing nocturnal serum melatonin concentrations in day time on sleep, mood, body temperature and performance. Proc Natl Acad Sci USA 91: 1824–1828

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ducis I, DiStefano V (1980) Evidence for a serotonin uptake system in isolated bovine pinealocyte syspensions. Mol Pharmacol 18: 438–446

    PubMed  CAS  Google Scholar 

  • Fernstrom JD, Larin F, Wurtman RJ (1971) Daily variations in the concentrations of individual amino acids in rat plasma. Life Sci 10: 813–819

    Article  CAS  Google Scholar 

  • Flórez J, Takahashi J (1996) Regulation of tryptophan hydroxylase by cyclic AMP, calicum, norepinephrine, and light in cultured pineal cells. J Neurochem 67: 242–254

    Article  PubMed  Google Scholar 

  • Foulkes N, Borjigin J, Snyder S, Sassone-Corsi P (1997) Rhythmic transcription: the molecular basis of circadian melatonin synthesis. Trends Neurosci 20: 487–492

    Article  PubMed  CAS  Google Scholar 

  • GraphPad Prims, Version 2.0, San Diego, CA, 1998 Gronier B, Jeanningros R (1995) Kinetic characterization of a carrier- mediated transport system for L-tryptophan in human blood platelets. Int Clin Psychopharmacol 10: 95–101

    Google Scholar 

  • Han X, Brudeau AM, Chesney RW (1998) Molecular cloning and functionalexpression of an LLC-PK1 cell taurine transporter that is adaptively regulated by taurine. In: Schaffer S, Lombardini JB, Huxtable RJ (eds) Taurine 3. Plenum Press. Adv Exp Med Biol 442: 261–268

    Google Scholar 

  • Hill A (1910) The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J Physiol (London) 40: 4–7

    Google Scholar 

  • Jayanthi LD, Ramamoorthy S, Mahesh VB, Leibach FH, Ganapathy V (1995) Substrate-specific regulation of the taurine transporter in human placental choriocarcinoma cells (JAR). Biochem Biophys Acta 1235: 351–360

    Google Scholar 

  • Jones DP, Miller LA, Chesney RW (1995) The relative roles of external taurine concentration and medium osmolality in the regulation of taurine transport in LLC-PK1 and MDCK cells. Pediatr Res 37: 227–232

    Article  PubMed  CAS  Google Scholar 

  • Karbownik M, Reiter RJ (2000) Antioxidative effects of melatonin in protection against cellular damage caused by ionizing radiation. Proc Soc Exp Biol Med 225: 9–22

    Article  PubMed  CAS  Google Scholar 

  • Kemp H, Taylor P (1997) Interactions between thyroid hormone and tryptophan transport in rat liver are modulated by thyroid status. Am J Physiol 272: E809–E816

    Google Scholar 

  • Kilberg MS, Han HP, Barber EF, Chiles TC (1985) Adaptive regulation of neutral amino acid transport System A in rat H4 hepatoma cells. J Cell Physiol 122: 290–298

    Article  PubMed  CAS  Google Scholar 

  • Klein DC (1978) The pineal gland: a model of neuroendocrine regulation. In: Reichlin S, Baldessarini RJ, Martin JB (eds) The hypothalamus. Association for research in nervous and mental disease, vol. 56. Raven Press, New York, pp 303–327

    Google Scholar 

  • Krause D, Duvocovish M (1990) Regulatory sites in the melatonin system of mammals. Trends Neurosci 13: 464–470

    Article  PubMed  CAS  Google Scholar 

  • Lima L, Sourkes T (1986) Reserpine and the monoaminergic regulation of adrenal dopamine beta-hydroxylase activity. Neuroscience 17: 235–245

    Article  PubMed  CAS  Google Scholar 

  • López-Burillo S, García-Sancho J, Herreros B (1985) Tryptophan transport through transport system T in human erytrocyte, theEhrlich cell and the rat intestine. Biochem Biophys Acta 820: 85– 94

    Google Scholar 

  • Loverberg W, Jequier E, Sjoerdsma A (1968) Tryptophan hydroxylation in mammalian systems. Adv Pharmacol 6 (Pt A): 21– 36

  • Low BC, Ross IK, Grigor MR (1994) Glucose deprivation and acute cycloheximide treatment stimulate system L amino acid transport in cultured vascular smooth muscle cells. J Biol Chem 269: 32098– 32103

    Google Scholar 

  • Mackensie B, Panayotova-Heiermann M, Loo DD, Lever JE, Wrigth EM (1994) SAAT1 is a low affinity Na+/glucose cotransporter and not an amino acid transporter. A reinterpretation. J Biol Chem 269: 22488–22491

    Google Scholar 

  • Matthews SA, Evans KL, Morgan WW, Petterborg LJ, Reiter RJ (1982) Pineal indoleamine metabolism in the cotton rat, Sigmodon hispidus: studies on norepinephrine, serotonin, Nacetyltransferase activity and melatonin. Prog Clin Biol Res 92: 35–44

    Google Scholar 

  • McCormick JI, Johnstone RM (1988) Simple and effective purification of Na+-dependent amino acid transport system from Ehrlich ascites cell plasma membrane. Proc Natl Acad Sci USA 85: 7877– 7881

    Google Scholar 

  • Miguez J, Simonneaux V, Pevet P (1997) The role of the intracellular and extracellular serotonin in the regulation of melatonin production in rat pinealocytes. J Pineal Res 23: 63–71

    Article  PubMed  CAS  Google Scholar 

  • Mitchell A, Manley S, Mortimer R (1994) Interactions between transport of triiodothyronine and tryptophan in JAR cells. Mol Cell Endocrinol 101: 203–210

    Article  PubMed  CAS  Google Scholar 

  • Montine TJ, Missala K, Sourkes TL (1992) Alpha-methyltryptophan metabolism in rat pineal gland and brain. J Pineal Res 12: 43–48

    Article  PubMed  CAS  Google Scholar 

  • Palacin M, Estevez R, Bertran J, Zorzano A (1998) Molecular biology of mammalian plasma membrane amino acid transporters. Physiol Rev 78: 969–1054

    PubMed  CAS  Google Scholar 

  • Pan M, Stevens MR (1995) Protein kinase C-dependent regulation of L-arginine transport activity in Caco-2 intestinal cells. Biochim Biophys Acta 1239: 27–32

    Article  PubMed  Google Scholar 

  • Perutz M (1990) Mechanisms of cooperativity and allosteric regulation of proteins. Cambridge University Press, New York Pineda M, Fernández E, Torrents D, Estévez R, López C, Camps M, Lloberas J, Zorzano, Palacin M (1999) Identification of a membrane protein, LAT-2, that ooexpresses with 4F2 heavy chain, an L-type amino acid transport activity with a broad specificity for small and large zwitterionic amino acids. J Biol Chem 274: 19738– 19744

  • Potterf SB, Muller J, Bernardini I, Tietze F, Kobayashi T, Hearing VJ, Gahl WA (1996) Characterization of a melanosomal transport system in murine melanocytes mediating entry of the melanogenic substrate tyrosine. J Biol Chem 271: 4002–4008

    Article  PubMed  CAS  Google Scholar 

  • Prasad PD, Wang H, Huang W, Kekuda R, Rajan DP, Leibach FH, Ganapathy V (1999) Human LAT1, a subunit of system L amino acid transporter: molecular cloning and transport function. Biochem Biophys Res Commun 255: 283–288

    Article  PubMed  CAS  Google Scholar 

  • Privat K, Ravault JP, Chesneau D, Fevre-Montagne M (1999) Day/ night variation of tryptophan hydroxylase and serotonin-Nacetylltransferase mRNA levels in the ovine pineal gland and retina. J Pineal Res 26: 193–203

    Article  PubMed  CAS  Google Scholar 

  • Rajan DP, Kekuda R, Huang W, Devoe LD, Leibach FH, Prasad PD, Ganapathy V (2000) Cloning and functional characterization of Na+-independent, broad-specific neutral amino acid transporter from mammalian intestine. Biochem Biophys Acta 1463: 6–14

    Article  PubMed  CAS  Google Scholar 

  • Redfern PH, Martin KF (1985) The effect of antidepressant drugs on 24-hour rhythms of tryptophan metabolism in the rat. Chronobiol Int 2: 109–113

    Article  PubMed  CAS  Google Scholar 

  • Reiter RJ, Maestroni GJ (1999) Melatonin in relation to the antioxidative defense and immune sustems: possible implications for cell and organ transplantation. J Mol Med 77: 36–39

    Article  PubMed  CAS  Google Scholar 

  • Reiter RJ, Tan D, Osuna C, Gitto E (2000) Actions of melatonin in the reduction of oxidative stress. A review. J Biomed Sci 7: 444– 458

    Google Scholar 

  • Rekha A, Kansal VK (1969) Discrimination of transport of L-tyrosine in mouse mammary gland: characterization of system I. Indian J Exp Biol 34: 750–757

    Google Scholar 

  • Reppert S, Weaver D, Ebisawa T (1994) Cloning and characterization of a mammalian melatonin receptor that mediates reproductive and circadian response. Neuron 13: 1177–1185

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg R, Young J, Ellory C (1980) L-tryptophan transport in human red blood cells. Biochim Biophys Acta 598: 375–384

    Article  PubMed  CAS  Google Scholar 

  • Sánchez del Pino MM, Peterson DR, Hawkins RA (1995) Neutral amino acid transport characterization of isolated luminal and abluminal membranes of the blood-brain barrier. J Biol Chem 270: 14913–14918

    Article  Google Scholar 

  • Sato K, Adams R, Betz H, Scholoss P (1995) Modulation of a recombinant glycine transporter (GLYT1b) by activation of protein kinase C. J Neurochem 65: 1967–1973

    Article  PubMed  CAS  Google Scholar 

  • Shedpure M, Pati A (1995) The pineal gland: structural and functional diversity. Indian J Exp Biol 33: 625–640

    PubMed  CAS  Google Scholar 

  • Shein HM, Wurtman RJ (1971) Stimulation of 14C-serotonin synthesis from 14C-tryptophan by mescaline and dibutyryl adenosine 3'5' monophosphate in rat pineal organ in culture. Life Sci 10: 935–940

    Article  CAS  Google Scholar 

  • Shotwell MA, Collarini EJ, Mansukhani A, Hampel AE, Oxender DL (1983) Isolation of Chinese hamster ovary cell mutants defective in the regulation of leucine transport. J Biol Chem 258: 8183– 8187

    Google Scholar 

  • Siu AW, Reiter RU, To CH (1999) Pineal indoleamines and vitamin E reduce nitric oxide-induced lipid peroxidation in rat retinal homogenates. J Pineal Res 27: 122–128

    CAS  Google Scholar 

  • Sokal R, Rohlf F (1979) Biometria. Principios y métodos estadísticos en la investigación biológica. H. Blume Ediciones, Madrid

    Google Scholar 

  • Sugden D (1979) Circadian change in rat pineal tryptophan content: lack of correlation with serum tryptophan. J Neurochem 33: 811– 813

    Google Scholar 

  • Tate SS, Yan N, Udenfriend S (1992) Expression cloning of a Na+- independent neutral amino acid transporter from rat kidney. Proc Natl Acad Sci USA 89: 1–5

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tchoumkeu-Nzouessa GC, Rebel G (1996) Regulation of taurine transport in rat astrocytes by protein kinase C: role of calcium and calmodulin. Am J Physiol 270 (4 Pt 1): C1022–C1028

    Google Scholar 

  • Tovar AR, Avila E, DeSantiago S, Torres N (2000) Characterization of methylaminoisobutyric acid transport by system A in rat mammary gland. Metabolism 49: 873–890

    Article  PubMed  CAS  Google Scholar 

  • Townsend DE, Wilkinson BJ (1992) Proline transport in Staphylococcus aureus: a high-affinity system and a low-affinity system involved in osmoregulation. J Bacteriol 174: 2702–2710

    PubMed Central  PubMed  CAS  Google Scholar 

  • Utsunomiya-Tate N, Endou H, Kanai Y (1996) Cloning and functional characterization of a system ASC-like Na+-dependent neutral amino acid transporter. J Biol Chem 271: 14883–14890

    Article  PubMed  CAS  Google Scholar 

  • Vadgama J, Christensen H (1985) Discrimination of Na+-independent transport systems L, T and ASC in erythrocytes. J Biol Chem 260: 2912–2921

    Google Scholar 

  • Waldhauser F, Ehrhart B, Forster E (1993) Clinical aspects of the melatonin impact: impact of development, aging, and puberty, involvement of melatonin in psychiatric disease and importance of neuroimmunoendocrine interactions. Experientia 49: 671–681

    Article  PubMed  CAS  Google Scholar 

  • Weissbach L, Handlogten ME, Christensen HN, Kilberg MS (1982) Evidence for two Na+-independent neutral amino acid transport systems in primary cultures of rat hepatocytes. J Biol Chem 257: 12006–12011

    PubMed  CAS  Google Scholar 

  • Wurtman RJ, Shein HM (1975) Lack of effect of increased pineal serotonin content on 3H-tryptophan uptake. J Neural Transm 36: 177–181

    Article  PubMed  CAS  Google Scholar 

  • Young J, Ellory J (1979) Transport of tryptophan and other amino acids by mammalian erytrocytes. J Neural Transm 15: 139–151

    CAS  Google Scholar 

  • Zhang Y, Liu GQ (1998) Sodium and chloride-dependent high and low-affinity uptakes of GABA by brain capillary endothelial cells. Brain Res 808: 1–7

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann RC, McDougle CJ, Schumacher M, Olcese J, Mason JW, Heninger GR, Price LH (1993) Effects of acute tryptophan depletion on nocturnal melatonin secretion in humans. J Clin Endocrinol Metab 76: 1160–1164

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Acknowledgements This work was supported by the Grant S1-3490 from Consejo Nacional de Investigaciones Cientificas y Tecnológicas (CONICIT), Venezuela. We appreciate the secretarial assistance of Mrs. Isabel Otaegui. Carmen I. Gutiérrez is a PhD Student from Ciencias Fisiológicas, Facultad de Medicina, Universidad Central de Venezueta (UCV), Caracas, and supported by Universidad Francisco de Miranda, Coro, Falcón, Venezuela. Joseph Glykys is a Medical Student from Universidad de Carabobo, Valencia, Venezuela, and an Assistant Student of Centro de Estudios Avanzados, IVIC.

Authors' address: Dr. Lucimey Lima, Laboratorio de Neuroquímica, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas, Apdo. 21827, Caracas 1020-A, Venezuela, Fax: 58-212-504-1295, E-mail: llima@cbb.ivic.ve

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutiérrez, C., Urbina, M., Obregion, F. et al. Characterization of tryptophan high affinity transport system in pinealocytes of the rat. Day-night modulation. Amino Acids 25, 95–105 (2003). https://doi.org/10.1007/s00726-002-0353-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-002-0353-1

Navigation