Skip to main content
Log in

Regulation of L-leucine transport in rat kidney by dexamethasone and triiodothyronine

  • Published:
Amino Acids Aims and scope Submit manuscript

Summary.

 We have investigated the transport mechanisms involved in the stimulation of renal tubular reabsorption of large amino acids by glucocorticoids in vivo through the examination of activity and expression of specific transport systems L and y+L for L-leucine in membrane preparations of rat kidneys. Kidneys were removed from adult female Wistar rats treated with dexamethasone or triiodothyronine, and the fractions of brush-border and basolateral membranes were isolated by density gradient centrifugation. Functional analysis of L-leucine uptake using rapid filtration technique revealed induction of a sodium-dependent, arginine-inhibitable system y+L transport component in the basolateral membrane in the dexamethasone-treated group. A minor sodium-independent, BCH-inhibitable, system L transport component was unaffected by glucocorticoids. L-leucine uptake remained unaffected in the triiodothyronine-treated group. Expression of both subunits of the system y+L transporter was increased in dexamethasone-treated rat kidneys: Western blot analysis showed a significant (46%) increase of 4F2hc protein abundance in the basolateral membrane fraction and competitive RT-PCR revealed an almost 4-times induced expression of y+LAT1 mRNA. Our results indicate that system y+L in rat kidney is regulated by glucocorticoids. We suggest that enhancement of both 4F2 heavy chain and y+LAT1 light chain is necessary for induction of this transport system in the kidney.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bertran J, Werner A, Chillaron J, Nunes V, Biber J, Testar X, Zorzano A, Estivill X, Murer H, Palacin M (1992) Expression cloning of a human renal cDNA that induces high affinity transport of L-cystine shared with dibasic amino acids in Xenopus oocytes. J Biol Chem 268: 14842–14849

    Google Scholar 

  • Bröer S, Bröer A, Hamprecht B (1995) The 4F2hc surface antigen is necessary for expression of system L-like neutral amino acid-transport activity in C6-BU-1 rat glioma cells: evidence from expression studies in Xenopus laevis oocytes. Biochem J 15: 863– 870

    Google Scholar 

  • Bröer S, Bröer A, Hamprecht B (1997) Expression of the surface antigen 4F2hc affects system-L-like neutral-amino-acid-transport activity in mammalian cells. Biochem J 324: 535–541 Campbell WA, Sah DE, Medina MM, Albina JE, Coleman WB, Thompson NL (2000) TA1/LAT-1/CD98 light chain and system L activity, but not 4F2/CD98 heavy chain, respond to arginine availability in rat hepatic cells. Loss of response in tumor cells. J Biol Chem 275: 5347–5354

    Google Scholar 

  • Chairoungdua A, Segawa H, Kim JJ, Mixamoto K, Haga H, Fukui Y, Mizoguchi K, Ito H, Takeda E, Endou H, Kanai Y (1999) Identification of an amino acid transporter associated with the cystinuria-related type II membrane glycoprotein. J Biol Chem 274: 28845–28848

    Article  PubMed  CAS  Google Scholar 

  • Cheeseman C (1992) Role of intestinal basolateral membrane in absorption of nutrients. Am J Physiol 263, R482-R488

    Google Scholar 

  • Christensen HN (1979) Exploiting amino acid structure to learn about membrane transport. Adv Enzymol 49: 41–101

    PubMed  CAS  Google Scholar 

  • Christensen HN (1990) Role of amino acid transport and counter transport in nutrition and metabolism. Physiol Rev 70: 43– 77

    Google Scholar 

  • Christensen HN, Oxender DL, Liang M, Vatz KA (1965) The use of N-methylation to direct route of mediated transport of amino acids. J Biol Chem 240: 3609–3616

    PubMed  CAS  Google Scholar 

  • Devés R, Chavéz P, Boyd CA (1992) Identification of a new transport system (y+L) in human erythrocytes that recognizes lysine and leucine with high affinity. J Physiol 454: 491–501

    PubMed Central  PubMed  Google Scholar 

  • Devés R, Boyd CA (2000) Surface antigen 4F2: not a single membrane protein, but a family of proteins with multiple functions. J Membr Biol 173: 165–177

    Article  PubMed  Google Scholar 

  • Estévez R, Camps M, Rojas AM, Testar X, Devés R, Hediger MA, Zorzano A, Palacín M (1998) The amino acid transport system y+L/4F2hc is a heteromultimeric complex. FASEB J 12: 1319– 1329

    Google Scholar 

  • Fei YJ, Prasad PD, Leibach FH, Ganapathy VJ (1995) The amino acid transport system y+L induced in Xenopus laevis oocytes by human choriocarcinoma cell (JAR) mRNA is functionally related to the heavy chain of the 4F2 cell surface antigen. Biochem 11: 8744–8751

    Article  Google Scholar 

  • Fleck C, Aurich M, Schwertfeger M (1997) Stimulation of renal amino acid reabsorption after treatment with triiodothyronine or dexamethasone in amino acid loaded rats. Amino Acids 12: 265– 279

    Google Scholar 

  • Foley KP, Leonard MW, Engel JD (1993) Quantitation of RNA using the polymerase chain reaction. Trends in Genetics 9: 380– 385

    Google Scholar 

  • Kanai Y, Stelzner MG, Lee WS, Wells RG, Brown D, Hediger MA (1992) Expression of mRNA (D2) encoding a protein involved in amino acid transport in S3 proximal tubule. Am J Physiol 263: F1087-F1092

    Google Scholar 

  • Kekuda R, Prasad PD, Fei YJ, Torres-Zamorano V, Sinha S, Yang- Feng TL, Leibach FH, Ganapathy VJ (1996) Cloning of the sodium-dependent, broad-scope, neutral amino acid transporter B° from a human placental choriocarcinoma cell line. J Biol Chem 271: 18657–18661

    Article  PubMed  CAS  Google Scholar 

  • Kudo Y, Boyd CA (2000) Heterodimeric amino acid transporters: expression of heavy but not light chains of CD98 correlates with induction of amino acid transport systems in human placental trophoblast. J Physiol 15: 13–18

    Article  Google Scholar 

  • Liang VC, Sedgwick T, Shi YB (1997) Characterization of the Xenopus homologue of an immediate early gene associated with cell activation: sequence analysis and regulation of its expression by thyroid hormone during amphibian metamorphosis. Cell Res 7: 179–193

    Article  PubMed  CAS  Google Scholar 

  • Mastroberardino L, Spindler B, Pfeiffer R, Skelly PJ, Loffing J, Shoemaker CB, Verrey F (1998) Amino acid transport by heterodimers of 4F2hc/CD98 and members of a permease family. Nature 395: 288–291

    Article  PubMed  CAS  Google Scholar 

  • Müller D, Glöckner R, Rost M, Steinmetzer P (1998) Monooxygenation, cytochrome P450-mRNA expression and other functions in precision-cut rat liver slices. Exp Toxicol Pathol 50: 507–513

    Article  PubMed  Google Scholar 

  • Mueckler MM (1992) The molecular biology of mammalian glucose transporters. Cur Opin Nephrol Hypertens 1: 12–20

    Article  CAS  Google Scholar 

  • Mykkänen J, Torrents D, Pineda M, Camps M, Yoldi ME, Horelli- Kuitunen N, Huoponen K, Heinonen M, Oksanen J, Simell O, Savontaus M, Zorzano A, Palacin M, Aula P (2000) Functional analysis of novel mutations in y+LAT-1 amino acid transporter gene causing lysinuric protein intolerance (LPI). Human Molec Genet 9: 431–438

    Google Scholar 

  • Nakamura E, Sato S, Yang H, Miyagawa F, Harasaki M, Tomita K, Matsuoka S, Noma A, Iwai K, Minato N (1999) 4F2 (CD98) heavy chain is associated covalently with an amino acid transporter and controls intracellular trafficking and membrane topology of 4F2 heterodimer. J Biol Chem 274: 3009–3016

    Google Scholar 

  • Palacin M, Estévez R, Bertran J, Zorzano A (1998) Molecular biology of mammalian plasma membrane amino acid transporters. Physiol Rev 78: 969–1054

    PubMed  CAS  Google Scholar 

  • Pfeiffer R, Loffing J, Rossier G, Bauch C, Meier C, Eggermann T, Loffing-Cueni D, Kühn LC, Verrey F (1999a) Luminal heterodimeric amino acid transporter defective in cystinuria. Molec Biol of Cell 10: 4135–4147

    Article  CAS  Google Scholar 

  • Pfeiffer R, Rossier G, Spindler B, Meier C, Kühn LC, Verrey F (1999b) Amino acid transport of y+L-type by heterodimers of 4F2hc/CD98 and members of the glycoprotein-associated amino acid transporter family. EMBO J 18: 49–57

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Pineda M, Fernández E, Torrents D, Estévez R, Lopez C, Camps M, Lloberas J, Zorzano A, Palacín M (1999) Identification of a membrane protein, LAT2, that co-expresses with 4F2 heavy chain, an L-type amino acid transport activity with broad specificity for small and large zwitterionic amino acids. J Biol Chem 274: 19738–19744

    Article  PubMed  CAS  Google Scholar 

  • Quackenbush E, Clabby M, Gottesdiener KM, Barbosa J, Jones NH, Strominger JL, Speck S, Leiden JM (1987) Molecular cloning of complementary DNAs encoding the heavy chain of the human 4F2 cell-surface antigen: a type II membrane glycoprotein involved in normal and neoplastic cell growth. Proc Natl Acad Sci USA 84: 6526–6530

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rajantie J, Simell O, Perheentupa J (1981) Lysinuric protein intolerance. Basolateral transport defect in renal tubuli. J Clin Invest 67: 1078–1082

    Google Scholar 

  • Rossier G, Meier C, Bauch C, Summa V, Sordat B, Verrey F, Kühn LC (1999) LAT2, a new basolateral 4F2hc/CD98-associated amino acid transporter of kidney and intestine. J Biol Chem 274: 34948–34954

    Article  PubMed  CAS  Google Scholar 

  • Sacktor B, Rosenbloom IL, Liang T, Cheng L (1981) Sodium gradient- and sodium plus potassium gradient-dependent Lglutamate uptake in renal basolateral membrane vesicles. J Membr Biol 60: 63–71

    Article  PubMed  CAS  Google Scholar 

  • Scharschmidt BF, Keefe EB, Blankenship NM, Ockner RK (1979) Validation of a recording spectrophotometric method for measurement of membrane-associated Mg- and Na-K-ATPase activity. J Lab Clin Med 93: 790–799

    PubMed  CAS  Google Scholar 

  • Schwertfeger M, Roskos M, Fleck C (2000) Identification of the site of glucocorticoid action on neutral amino acid transport in superficial nephrons of rat kidney. Amino Acids 18: 279–288

    Article  PubMed  CAS  Google Scholar 

  • Segawa H, Fukasawa Y, Miyamoto K, Takeda E, Endou H, Kanai Y (1999) Identification and functional characterization of a Na+- independent neutral amino acid transporter with broad substrate selectivity. J Biol Chem 274: 19745–19751

    Article  PubMed  CAS  Google Scholar 

  • Siebert PD, Larrick JW (1992) Competitive PCR. Nature 359: 557– 558

    Google Scholar 

  • Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Analyt Biochem 150: 76–85

    Article  PubMed  CAS  Google Scholar 

  • Spindler B, Mastroberardino L, Custer M, Verrey F (1997) Characterization of early aldosterone-induced RNAs identified in A6 kidney epithelia. Pflügers Arch Eur J Physiol 434: 323–331

    Article  CAS  Google Scholar 

  • Stevens BR, Kaunitz JD, Wright EM (1984) Intestinal transport of amino acids and sugars: advances using membrane vesicles. Ann Rev Physiol 46: 417–433

    Article  CAS  Google Scholar 

  • Torrents D, Estévez R, Pineda M, Fernández E, Lloberas J, Shi Y, Zorzano A, Palacin M (1998) Identification and characterization of a membrane protein (y+L amino acid transporter-1) that associates with 4F2hc to encode the amino acid transport activity y+L – A candidate gene for lysinuric protein intolerance. J Biol Chem 273: 32437–32445

    Article  PubMed  CAS  Google Scholar 

  • Utsunomiya-Tate N, Endou H, Kanai Y (1996) Cloning and functional characterization of a system ASC-like Na+-dependent neutral amino acid transporter. J Biol Chem 271: 14883–14890

    Article  PubMed  CAS  Google Scholar 

  • Verrey F, Lack DL, Paulsen IT, Saier MH, Pfeiffer R (1999) New glycoprotein-associated amino acid transporters. J Membr Biol 172: 181–192

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Tate SS (1995) Oligomeric structure of a renal cystine transporter: implications in cystinuria. FEBS Lett 368: 389–392

    Article  PubMed  CAS  Google Scholar 

  • Wells RG, Hediger MA (1992) Cloning of a rat kidney cDNA that stimulates dibasic and neutral amino acid transport and has sequence similarity to glucosidases. Proc Natl Acad Sci USA 89: 5596–5600

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wells RG, Lee WS, Kanai Y, Leiden JM, Hediger MA (1992) The 4F2 antigen heavy chain induces uptake of neutral and dibasic amino acids in Xenopus oocytes. J Biol Chem 267: 15285–15288

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Acknowledgements The authors thank James Ritchie and Fiona Baird for excellent technical advice. This work was supported by the Universities of Dundee and Jena and the Wellcome Trust.

Authors' address: Prof. Dr. Christian Fleck, Klinikum der Friedrich-Schiller-Universität Jena, Institut für Pharmakologie und Toxikologie, D-07740 Jena, Germany, Fax: ++49+3641+938702, E-mail: Christian.Fleck@mti-n.mti.uni-jena.de

Abbreviations: BBMV – brush-border membrane vesicles; BLMV – basolateral membrane vesicles; DEX – dexamethasone; T3 – triiodothyronine; BCH – 2-amino-2-carboxybicyclo[2,2,1]heptane-2-carboxylic acid; MeAIB – alpha-(N-methylamino)isobutyric acid

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwertfeger, M., Pissowotzki, K., Fleck, C. et al. Regulation of L-leucine transport in rat kidney by dexamethasone and triiodothyronine. Amino Acids 25, 75–83 (2003). https://doi.org/10.1007/s00726-002-0348-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-002-0348-y

Navigation