Skip to main content

Advertisement

Log in

EPR Dosimetry in Human Fingernails: Investigation of the Origin of the Endogenous Signal and Implications for Estimating Dose from Nail Signals

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Human nails have been studied for many years for potential use for dosimetry, based on the EPR signals induced by ionizing radiation, but a fully validated protocol to measure doses retrospectively has not yet been developed. The major problem is that the EPR spectrum of irradiated nails is complex and its radiation-induced signals (RIS) overlap with an endogenous signal called the background signal (BKS). RIS and BKS have similar spectral parameters. Therefore, detailed characterization of the BKS is required to develop a method for measuring the amount of RIS by removing the signal due to BKS from the total spectrum of irradiated nails. Effects of reducing and oxidizing treatments of fingernail samples on the BKS were studied. Numerical simulations of the observed BKSs were performed. Common features of the EPR spectra in fingernails are discussed. We also found that BKS can be generated in the fingernail clippings by oxidation in ambient air with dioxygen. Results support the hypothesis that BKS is an o-semiquinone radical anion. Comparison of the chemical and spectral properties of the BKS and with the RIS 5 (the stable signal suitable for dose assessment) suggests that both sets of radicals underlying these signals are o-semiquinone radicals. Given the common chemical properties of the BKS and RIS 5, it is unlikely that chemical treatment methods will provide a way to differentiate these two signals in irradiated nail spectra. Instead, other methods (i.e., dose-additive methods, population-derived BKS means) may be necessary to selectively estimate the content of BKS and RIS 5 in irradiated nail spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. E.A. Ainsbury, E. Bakhanova, J.F. Barquinero, M. Brai, V. Chumak, V. Correcher, F. Darroudi, P. Fattibene, G. Gruel, I. Guclu, S. Horn, A. Jaworska, U. Kulka, C. Lindholm, D. Lloyd, A. Longo, M. Marrale, O. Monteiro Gil, U. Oestreicher, J. Pajic, B. Rakic, H. Romm, F. Trompier, I. Veronese, P. Voisin, A. Vral, C.A. Whitehouse, A. Wieser, C. Woda, A. Wojcik, K. Rothkamm, Radiat. Prot. Dosimetry 147, 573 (2011)

    Article  Google Scholar 

  2. F. Trompier, C. Bassinet, A. Wieser, C.D. Angelis, D. Viscomi, P. Fattibene, Ann. Ist. Super. Sanita 45, 287 (2009)

    Google Scholar 

  3. J. Kaminska, B. Ciesielski, B. Drogoszewska, K. Emerich, K. Krefft, M. Juniewicz, Radiat. Meas. 92, 86 (2016)

    Article  Google Scholar 

  4. E.A. Shishkina, A.Y. Volchkova, Y.S. Timofeev, P. Fattibene, A. Wieser, D.V. Ivanov, V.A. Krivoschapov, V.I. Zalyapin, S. Della Monaca, V. De Coste, M.O. Degteva, L.R. Anspaugh, Radiat. Environ. Biophys. 55, 477 (2016)

    Article  Google Scholar 

  5. International Atomic Energy Agency (IAEA), Accidental Overexposure of Radiotherapy Patients in Bialystok (Vienna, 2004). ISBN 92–0–114203–X

  6. International Atomic Energy Agency (IAEA), The Radiological Accident in Lia, Georgia (Vienna, 2014)

  7. International Atomic Energy Agency (IAEA), The Radiological Accident in Chilca (Vienna, 2018). ISBN 978–92–0–101817–5

  8. E. Bey, M. Prat, P. Duhamel, M. Benderitter, M. Brachet, F. Trompier, P. Battaglini, I. Ernou, L. Boutin, M. Gourven, F. Tissedre, S. Créa, C. Mansour, T. de Revel, H. Carsin, P. Gourmelon, J. Lataillade, Wound Repair Regen. 18, 50 (2010)

    Article  Google Scholar 

  9. F. Trompier, J. Sadlo, J. Michalik, W. Stachowicz, A. Mazal, I. Clairand, J. Rostkowska, W. Bulski, A. Kulakowski, J. Sluszniak, S. Gozdz, A. Wojcik, Radiat. Meas. 42, 1025 (2007)

    Article  Google Scholar 

  10. F. Trompier, P. Battaglini, D. Tikunov, I. Clairand, Radiat. Meas. 43, 837 (2008)

    Article  Google Scholar 

  11. F. Trompier, F. Queinnec, E. Bey, T. De Revel, J.J. Lataillade, I. Clairand, M. Benderitter, J.-F. BottollierDepois, Health Phys. 106, 798 (2014)

    Article  Google Scholar 

  12. G. Strzelczak, J. Sadło, M. Danilczuk, W. Stachowicz, F. Callens, G. Vanhaelewyn, E. Goovaerts, J. Michalik, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 67, 1206 (2007)

    Article  ADS  Google Scholar 

  13. I. Clairand, F. Trompier, J.-F. Bottollier-Depois, P. Gourmelon, Radiat. Prot. Dosimetry 119, 500 (2006)

    Article  Google Scholar 

  14. I. Clairand, C. Huet, F. Trompier, J.-F. Bottollier-Depois, Radiat. Meas. 43, 698 (2008)

    Article  Google Scholar 

  15. International Atomic Energy Agency (IAEA), The Radiological Accident in Lilo (Vienna, 2000). ISBN 92-0-101300-0

  16. A.B. Flood, B.B. Williams, W. Schreiber, G. Du, V.A. Wood, M.M. Kmiec, S.V. Petryakov, E. Demidenko, H.M. Swartz, H.K. Boyle, E. Elder, B. Sands, Radiat. Prot. Dosimetry 172, 72 (2016)

    Article  Google Scholar 

  17. J.D. Pollock, B.B. Williams, J.W. Sidabras, O. Grinberg, I. Salikhov, P. Lesniewski, M. Kmiec, H.M. Swartz, Health Phys. 98, 339 (2010)

    Article  Google Scholar 

  18. W. Schreiber, S.V. Petryakov, M.M. Kmiec, M.A. Feldman, P.M. Meaney, V.A. Wood, H.K. Boyle, A.B. Flood, B.B. Williams, H.M. Swartz, Radiat. Prot. Dosimetry 172, 87 (2016)

    Article  Google Scholar 

  19. B.B. Williams, A.B. Flood, I. Salikhov, K. Kobayashi, R. Dong, K. Rychert, G. Du, W. Schreiber, H.M. Swartz, Radiat. Environ. Biophys. 53, 335 (2014)

    Article  Google Scholar 

  20. A. Romanyukha, C.A. Mitchell, D.A. Schauer, L. Romanyukha, H.M. Swartz, Health Phys. 93, 631 (2007)

    Article  Google Scholar 

  21. A. Romanyukha, F. Trompier, R.A. Reyes, M.A. Melanson, Radiat. Meas. 46, 888 (2011)

    Article  Google Scholar 

  22. A. Romanyukha, F. Trompier, R.A. Reyes, Radiat. Environ. Biophys. 53, 305 (2014)

    Article  Google Scholar 

  23. T. De, A. Romanyukha, F. Trompier, B. Pass, P. Misra, Appl. Magn. Reson. 44, 375 (2013)

    Article  Google Scholar 

  24. A. Romanyukha, F. Trompier, R.A. Reyes, D.M. Christensen, C.J. Iddins, S.L. Sugarman, Radiat. Environ. Biophys. 53, 755 (2014)

    Article  Google Scholar 

  25. A. Noori, M. Mostajaboddavati, F. Ziaie, Nucl. Eng. Technol. 50, 526 (2018)

    Article  Google Scholar 

  26. M.C.R. Symons, H. Chandra, J.L. Wyatt, Radiat. Prot. Dosimetry 58, 11 (1995)

    Google Scholar 

  27. L. Wang, X. Wang, W. Zhang, H. Zhang, S. Ruan, L. Jiao, Health Phys. 109, 10 (2015)

    Article  Google Scholar 

  28. S. Çolak and T. Özbey, J. Phys. Educ. Sport 12, (2012).

  29. X. He, J. Gui, T.P. Matthews, B.B. Williams, S.G. Swarts, O. Grinberg, J. Sidabras, D.E. Wilcox, H.M. Swartz, Radiat. Meas. 46, 882 (2011)

    Article  Google Scholar 

  30. D.E. Wilcox, X. He, J. Gui, A.E. Ruuge, H. Li, B.B. Williams, H.M. Swartz, Health Phys. 98, 309 (2010)

    Article  Google Scholar 

  31. A. Romanyukha, F. Trompier, B. LeBlanc, C. Calas, I. Clairand, C.A. Mitchell, J.G. Smirniotopoulos, H.M. Swartz, Radiat. Meas. 42, 1110 (2007)

    Article  Google Scholar 

  32. F. Trompier, L. Kornak, C. Calas, A. Romanyukha, B. LeBlanc, C.A. Mitchell, H.M. Swartz, I. Clairand, Radiat. Meas. 42, 1085 (2007)

    Article  Google Scholar 

  33. F. Trompier, A. Romanyukha, L. Kornak, C. Calas, B. LeBlanc, C. Mitchell, H. Swartz, I. Clairand, Radiat. Meas. 44, 6 (2009)

    Article  Google Scholar 

  34. F. Trompier, A. Romanyukha, R. Reyes, H. Vezin, F. Queinnec, D. Gourier, Radiat. Environ. Biophys. 53, 291 (2014)

    Article  Google Scholar 

  35. A. Romanyukha, R.A. Reyes, F. Trompier, L.A. Benevides, Health Phys. 98, 296 (2010)

    Article  Google Scholar 

  36. A. Marciniak, B. Ciesielski, Appl. Spectrosc. Rev. 51, 73 (2016)

    Article  ADS  Google Scholar 

  37. P.J. Black, S.G. Swarts, Health Phys. 98, 301 (2010)

    Article  Google Scholar 

  38. H. Chandra, M.C.R. Symons, Nature 328, 833 (1988)

    Article  ADS  Google Scholar 

  39. T. Zhang, Z. Zhao, H. Zhang, H. Zhai, S. Ruan, L. Jiao, W. Zhang, J. Radiat. Res. 57, 460 (2016)

    Article  ADS  Google Scholar 

  40. A. Marciniak, B. Ciesielski, A. Prawdzik-Dampc, Radiat. Prot. Dosimetry 162, 6 (2014)

    Article  Google Scholar 

  41. D.S. Tipikin, S.G. Swarts, J.W. Sidabras, F. Trompier, H.M. Swartz, Radiat. Prot. Dosimetry 172, 3 (2016)

    Article  Google Scholar 

  42. S. Sholom, S.W.S. McKeever, Radiat. Meas. 88, 1866 (2016)

    Article  Google Scholar 

  43. H. Choi, B. Park, M. Choi, B. Lee, C.E. Lee, Radiat. Prot. Dosimetry 159, R233 (2014)

    Article  Google Scholar 

  44. X. He, S.G. Swarts, E. Demidenko, A.B. Flood, O. Grinberg, J. Gui, M. Mariani, S.D. Marsh, A.E. Ruuge, J.W. Sidabras, D.E. Wilcox, H.M. Swartz, Radiat. Prot. Dosimetry 159, 172 (2014)

    Article  Google Scholar 

  45. S. Sholom, S. McKeever, Radiat. Phys. Chem. 141, 78 (2017)

    Article  ADS  Google Scholar 

  46. T. Zhang, W. Zhang, Z. Zhao, H. Zhang, S. Ruan, L. Jiao, Radiat. Prot. Dosimetry 171, 297 (2016)

    Google Scholar 

  47. R.A. Reyes, A. Romanyukha, F. Trompier, C.A. Mitchell, I. Clairand, T. De, L.A. Benevides, H.M. Swartz, Radiat. Environ. Biophys. 47, 515 (2008)

    Article  Google Scholar 

  48. R.A. Reyes, F. Trompier, A. Romanyukha, Health Phys. 103, 175 (2012)

    Article  Google Scholar 

  49. F. Trompier, A. Romanyukha, S. Swarts, R. Reyes, D. Gourier, Radiat. Meas. 75, 6 (2015)

    Article  Google Scholar 

  50. S. Stoll, A. Schweiger, J. Magn. Reson. 178, 42 (2006)

    Article  ADS  Google Scholar 

  51. J.T. Ayodele, A.S. Bayero, Int. J. Environ. Res. 4, 333 (2010)

    Google Scholar 

  52. G. Strzelczak, M. Sterniczuk, J. Sadło, M. Kowalska, J. Michalik, Nukleonika 58, 505 (2013)

    Google Scholar 

  53. J. André, N. Lateur, Dermatol. Clin. 24, 329 (2006)

    Article  Google Scholar 

  54. C. Perrin, J.F. Michiels, A. Pisani, J.P. Ortonne, Am. J. Dermatopathol. 19, 462 (1997)

    Article  Google Scholar 

  55. A. Tosti, N. Cameli, B.M. Piraccini, P.A. Fanti, J. Am. Acad. Dermatol. 31, 193 (1994)

    Article  Google Scholar 

  56. B. Kalyanaraman, P.I. Premovic, R.C. Sealy, J. Biol. Chem. 262, 11080 (1987)

    Article  Google Scholar 

  57. R.W. Miller, U. Rapp, J. Biol. Chem. 248, 6084 (1973)

    Article  Google Scholar 

  58. D.C. Borg, Proc. Natl. Acad. Sci. US 53, 633 (1965)

    Article  ADS  Google Scholar 

  59. C.A.B. Gonzales, J.E. Taño, H. Yasuda, Appl. Sci. 10, 1 (2020)

    Article  Google Scholar 

  60. K. Brudzynski, L. Maldonado-Alvarez, Polish J. Food Nutr. Sci. 65, 71 (2015)

    Article  Google Scholar 

  61. S. Shadman, M. Bahreini, S.H. Tavassoli, Appl. Opt. 51, 2004 (2012)

    Article  ADS  Google Scholar 

  62. H.L. Bank, J. Robson, J.B. Bigelow, J. Morrison, L.H. Spell, R. Kantor, Clin. Chim. Acta 116, 179 (1981)

    Article  Google Scholar 

  63. O.D. Vellar, Am. J. Clin. Nutr. 23, 1272 (1970)

    Article  Google Scholar 

  64. T. Sarna, P.M. Plonka, In Biomed, EPR Part A Free Radicals, in Met. Med. Physiol. Biol. Magn. Reson. ed. by S.S. Eaton, G.R. Eaton, L.J. Berliner (Springer, US, Boston, 2005), pp. 125–146

    Google Scholar 

  65. C.C. Felix, J.S. Hyde, T. Sarna, R.C. Sealy, J. Am. Chem. Soc. 100, 3922 (1978)

    Article  Google Scholar 

  66. M.S. Greaves, J.M.H. Moll, Clin. Chem. 22, 1608 (1976)

    Article  Google Scholar 

  67. O. Grinberg, J.W. Sidabras, D. Tipikin, V. Krymov, S.G. Swarts, H.M. Swartz, Appl. Magn. Reson. 51, 1093 (2020)

    Article  Google Scholar 

  68. J.W. Sidabras, S.K. Varanasi, R.R. Mett, S.G. Swarts, H.M. Swartz, J.S. Hyde, Rev. Sci. Instrum. 85, 104707 (2014)

    Article  ADS  Google Scholar 

  69. S.G. Swarts, J.W. Sidabras, O. Grinberg, D.S. Tipikin, M.M. Kmiec, S.V. Petryakov, W. Schreiber, V.A. Wood, B.B. Williams, A.B. Flood, H.M. Swartz, Health Phys. 115, 140 (2018)

    Article  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

The first draft of the manuscript was written by NT, NT performed the experiments under the supervision of FT and DG and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to François Trompier.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tkatchenko, N., Romanyukha, A., Reyes, R. et al. EPR Dosimetry in Human Fingernails: Investigation of the Origin of the Endogenous Signal and Implications for Estimating Dose from Nail Signals. Appl Magn Reson 53, 319–334 (2022). https://doi.org/10.1007/s00723-021-01458-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-021-01458-4

Navigation