Skip to main content
Log in

The Direct Dimension in Pulse EPR

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The direct dimension or time following directly after a pulse sequence in pulse EPR is rarely utilized. Many of the reasons for this stem from limitations in the technology available at the time pulse EPR was developed. The underutilization of the direct dimension can limit sensitivity, information content, and accurate analysis of data. Some features of the direct dimension are illustrated using two-pulse ESEEM spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of Data and Materials

The raw data files are available from the authors on request.

References

  1. J.L. Du, K.M. More, S.S. Eaton, G.R. Eaton, Orientation dependence of electron-spin phase memory relaxation-times in copper(II) and vanadyl complexes in frozen solution. Isr. J. Chem. 32(2–3), 351–355 (1992)

    Article  Google Scholar 

  2. J.-L. Du, G.R. Eaton, S.S. Eaton, Electron spin relaxation in Vanadyl, Copper(II), and Silver(II) Porphyrins in glassy solvents and doped solids. J. Magn. Reson., Ser. A 119(2), 240–246 (1996). https://doi.org/10.1006/jmra.1996.0079

    Article  ADS  Google Scholar 

  3. L. Yong, J. Harbridge, R.W. Quine, G.A. Rinard, S.S. Eaton, G.R. Eaton, C. Mailer, E. Barth, H.J. Halpern, Electron spin relaxation of triarylmethyl radicals in fluid solution. J. Magn. Reson. 152(1), 156–161 (2001). https://doi.org/10.1006/jmre.2001.2379

    Article  ADS  Google Scholar 

  4. S.S. Eaton, J. Harbridge, G.A. Rinard, G.R. Eaton, R.T. Weber, Frequency dependence of electron spin relaxation for three S = 1/2 species doped into diamagnetic solid hosts. Appl. Magn. Reson. 20(1–2), 151–157 (2001). https://doi.org/10.1007/bf03162316

    Article  Google Scholar 

  5. R. Owenius, G.R. Eaton, S.S. Eaton, Frequency (250 MHz to 9.2 GHz) and viscosity dependence of electron spin relaxation of triarylmethyl radicals at room temperature. J. Magn. Reson. 172(1), 168–175 (2005). https://doi.org/10.1016/j.jmr.2004.10.007

    Article  ADS  Google Scholar 

  6. A. Rajca, Y. Wang, M. Boska, J.T. Paletta, A. Olankitwanit, M.A. Swanson, D.G. Mitchell, S.S. Eaton, G.R. Eaton, S. Rajca, Organic radical contrast agents for magnetic resonance imaging. J Am Chem Soc 134(38), 15724–15727 (2012). https://doi.org/10.1021/ja3079829

    Article  Google Scholar 

  7. A. Rajca, Y. Wang, M. Boska, J.T. Paletta, A. Olankitwanit, M.A. Swanson, D.G. Mitchell, S.S. Eaton, G.R. Eaton, S. Rajca, Correction to organic radical contrast agents for magnetic resonance imaging. J. Am. Chem. Soc. 136(8), 3318–3318 (2014). https://doi.org/10.1021/ja413028d

    Article  Google Scholar 

  8. Y. Shi, R.W. Quine, G.A. Rinard, L. Buchanan, S.S. Eaton, G.R. Eaton, B. Epel, S.W. Seagle, H.J. Halpern, Triarylmethyl radical: EPR signal to noise at frequencies between 250 MHz and 1.5 GHz and dependence of relaxation on radical and salt concentration and on frequency. Z Phys Chem (N F) 231(4), 923–937 (2017). https://doi.org/10.1515/zpch-2016-0813

    Article  Google Scholar 

  9. J.R. Biller, J.E. McPeak, S.S. Eaton, G.R. Eaton, Measurement of T-1e, T-1N, T-1HE, T-2e, and T-2HE by pulse EPR at X-band for nitroxides at concentrations relevant to solution DNP. Appl. Magn. Reson. 49(11), 1235–1251 (2018). https://doi.org/10.1007/s00723-018-1049-3

    Article  Google Scholar 

  10. W. Moore, J.E. McPeak, M. Poncelet, B. Driesschaert, S.S. Eaton, G.R. Eaton, 13C isotope enrichment of the central trityl carbon decreases fluid solution electron spin relaxation times. J. Magn. Reson. (2020). https://doi.org/10.1016/j.jmr.2020.106797

    Article  Google Scholar 

  11. Y.-Q. Song, A. Souza, M. Vembusubramanian, Y. Tang, K. Fellah, L. Feng, S.L. Reeder, Multiphysics NMR correlation spectroscopy. J. Magn. Reson. (2020). https://doi.org/10.1016/j.jmr.2020.106887

    Article  Google Scholar 

  12. R.N. Schwartz, L.L. Jones, M.K. Bowman, Electron spin-echo studies of nitroxide free radicals in liquids. J. Phys. Chem. 83, 3429–3434 (1979)

    Article  Google Scholar 

  13. Semenov, A.G., Khmelinsky, V.E., Zhidkov, V.E., Shirov, M.D., Dvornikov, E.V., Coherent Spectrometer of Electron Spin Echo, in Preprints of The Institute of Chemical Kinetics and Combustion, Siberian Branch of the USSR Academy Of Sciences, vol. 3, ed. by Yu.D. Tsvetkov. Novosibirsk, Inst. Chem. Kinet.&Combust (1980) (In Russian)

  14. M.K. Bowman, Fourier transform electron spin resonance, in Modern Pulsed and Continuous Electron Spin Resonance, vol. 1st, ed. by L. Kevan, M.K. Bowman (Wiley, New York, 1990), pp. 1–42

    Google Scholar 

  15. R.R. Ernst, G. Bodenhausen, A. Wokaun, Principles of Nuclear Magnetic Resonance in One and Two Dimensions (Clarendon Press, Oxford, 1987)

    Google Scholar 

  16. A.V. Astashkin, V.V. Kozlyuk, A.M. Raitsimring, ESEEM measurements with time-resolved detection of the entire ESE signal shape. J Magn Reson 145(2), 357–363 (2000). https://doi.org/10.1006/jmre.2000.2100

    Article  ADS  Google Scholar 

  17. M.K. Bowman, H. Chen, A.G. Maryasov, Fourier-transform EPR, in eMagRes, vol. 6, ed. by D. Goldfarb, S. Stoll (Wiley, Chichester, 2017), pp. 387–406

    Chapter  Google Scholar 

  18. A.G. Maryasov, M.K. Bowman, Y.D. Tsvetkov, Vector model of electron spin echo envelope modulation due to nuclear hyperfine and zeeman interactions. Appl. Magn. Reson. 23(2), 211–233 (2002)

    Article  Google Scholar 

  19. W.B. Mims, Electron Spin Echoes, in Electron Paramagnetic Resonance. ed. by S. Geschwind (Plenum, New York, 1972), pp. 263–352

    Chapter  Google Scholar 

  20. K.M. Salikhov, A.G. Semenov, Y.D. Tsvetkov, The Electron Spin Echo and Its Applications (Nauka, Novosibirsk, 1976)

    Google Scholar 

  21. S.A. Dikanov, Y.D. Tsvetkov, Electron Spin Echo Envelope Modulation (ESEEM) Spectroscopy (CRC Press, Boca-Raton, 1992)

    Google Scholar 

  22. J. Isoya, H. Kanda, J.R. Norris, J. Tang, M.K. Bowman, Fourier-transform and continuous-wave EPR studies of nickel in synthetic diamond: Site and spin multiplicity. Phys. Rev. B Condens. Matter 41(7), 3905–3913 (1990)

    Article  ADS  Google Scholar 

  23. L.J. Berliner, S.S. Eaton, G.R. Eaton, Distance Measurements in Biological Systems by EPR, vol. 19 (Springer Science & Business Media, 2006)

    Google Scholar 

  24. O. Dobbert, T. Prisner, K.P. Dinse, Single-channel quadrature FT ESR. J. Magn. Reson. (1969) 70(1), 173–175 (1986). https://doi.org/10.1016/0022-2364(86)90375-6

    Article  Google Scholar 

  25. T. Prisner, O. Dobbert, K.P. Dinse, H. Van Willigen, FT ESR study of photoinduced electron transfer. J. Am. Chem. Soc. 110(5), 1622–1623 (1988). https://doi.org/10.1021/ja00213a045

    Article  Google Scholar 

  26. A. Angerhofer, M. Toporowicz, M.K. Bowman, J.R. Norris, H. Levanon, Effect of triplet spin dynamics memory in electron transfer reactions. Fourier transform-EPR spectroscopy. J. Phys. Chem. 92, 7164–7166 (1988)

    Article  Google Scholar 

  27. M.K. Bowman, M. Toporowicz, J.R. Norris, T.J. Michalski, A. Angerhofer, H. Levanon, Fourier transform-Epr spectroscopy of electron-transfer from excited-state of chlorophyll and porphyrin to duroquinone. Isr. J. Chem. 28(2–3), 215–222 (1988)

    Article  Google Scholar 

  28. K. Hasharoni, H. Levanon, M.K. Bowman, J.R. Norris, D. Gust, T.A. Moore, A.L. Moore, Analysis of time-resolved CW-ESR spectra of short-lived radicals at different times after laser excitation. Appl. Magn. Reson. 1, 357–368 (1990)

    Article  Google Scholar 

  29. M.K. Bowman, T.J. Michalski, M. Peric, H.J. Halpern, Fourier-transform EPR and low-frequency EPR studies of nitroxides. Pure Appl. Chem. 62, 271–274 (1990)

    Article  Google Scholar 

  30. K. Hasharoni, H. Levanon, J. Tang, M.K. Bowman, J.R. Norris, D. Gust, T.A. Moore, A.L. Moore, Singlet photochemistry in model photosynthesis—identification of charge separated intermediates by fourier-transform and Cw-Epr spectroscopies. J. Am. Chem. Soc. 112(18), 6477–6481 (1990). https://doi.org/10.1021/ja00174a004

    Article  Google Scholar 

  31. T. Sarna, J. Zajac, M.K. Bowman, T.G. Truscott, Photoinduced electron transfer reactions of rose bengal and selected electron donors. J. Photochem. Photobiol. A 60, 295–310 (1991)

    Article  Google Scholar 

  32. A. Berman, A. Michaeli, J. Feitelson, M.K. Bowman, J.R. Norris, H. Levanon, E. Vogel, P. Koch, Photophysics and photoinduced-electron-transfer reactions of zinc and free-base octaethylporphycenes. J. Phys. Chem. 96(7), 3041–3047 (1992). https://doi.org/10.1021/j100186a048

    Article  Google Scholar 

  33. A. Angerhofer, R.J. Massoth, M.K. Bowman, Fourier transform EPR measurement of homogeneous electron transfer rates. Isr. J. Chem. 28(4), 227–238 (1988). https://doi.org/10.1002/ijch.198800035

    Article  Google Scholar 

  34. B.R. Patyal, R.H. Crepeau, D. Gamliel, J.H. Freed, Two-dimensional Fourier transform ESR in the slow-motional and rigid limits: SECSY-ESR. Chem. Phys. Lett. 175(5), 445–452 (1990). https://doi.org/10.1016/0009-2614(90)85562-q

    Article  ADS  Google Scholar 

  35. B.R. Patyal, R.H. Crepeau, D. Gamliel, J.H. Freed, Two-dimensional Fourier transform ESR in the slow-motional and rigid limits: 2D-ELDOR. Chem. Phys. Lett. 175(5), 453–460 (1990). https://doi.org/10.1016/0009-2614(90)85563-r

    Article  ADS  Google Scholar 

  36. S. Saxena, J.H. Freed, Absorption lineshapes in two-dimensional electron spin resonance and the effects of slow motions in complex fluids. J Magn Reson 124(2), 439–454 (1997). https://doi.org/10.1006/jmre.1996.1078

    Article  ADS  Google Scholar 

  37. S.K. Misra, P.P. Borbat, J.H. Freed, Calculation of double-quantum-coherence two-dimensional spectra: distance measurements and orientational correlations. Appl Magn Reson 36(2–4), 237–258 (2009). https://doi.org/10.1007/s00723-009-0023-5

    Article  Google Scholar 

  38. S. Saxena, J.H. Freed, Double quantum two-dimensional Fourier transform electron spin resonance: distance measurements. Chem. Phys. Lett. 251(1–2), 102–110 (1996). https://doi.org/10.1016/0009-2614(96)00075-9

    Article  ADS  Google Scholar 

  39. B. Epel, M.K. Bowman, C. Mailer, H.J. Halpern, Absolute oxygen R-1e imaging in vivo with pulse electron paramagnetic resonance. Magn. Reson. Med. 72(2), 362–368 (2014). https://doi.org/10.1002/Mrm.24926

    Article  Google Scholar 

  40. B. Epel, H.J. Halpern, Comparison of pulse sequences for R1-based electron paramagnetic resonance oxygen imaging. J. Magn. Reson. 254, 56–61 (2015). https://doi.org/10.1016/j.jmr.2015.02.012

    Article  ADS  Google Scholar 

  41. B. Epel, M. Kotecha, H.J. Halpern, In vivo preclinical cancer and tissue engineering applications of absolute oxygen imaging using pulse EPR. J. Magn. Reson. 280, 149–157 (2017). https://doi.org/10.1016/j.jmr.2017.04.017

    Article  ADS  Google Scholar 

  42. B. Epel, H.J. Halpern, Imaging. Emagres 6(1), 149–160 (2017). https://doi.org/10.1002/9780470034590.emrstm1512

    Article  ADS  Google Scholar 

  43. Y.L. Shi, R.W. Quine, G.A. Rinard, L. Buchanan, S.S. Eaton, G.R. Eaton, B. Epel, S.W. Seagle, H.J. Halpern, Triarylmethyl radical OX063d24 oximetry: electron spin relaxation at 250 MHz and RF frequency dependence of relaxation and signal-to-noise, in Oxygen Transport to Tissue Xxxix, vol. 977. Advances in Experimental Medicine and Biology. ed. by H.J. Halpern, J.C. LaManna, D.K. Harrison, B. Epel (Springer, 2017), pp. 327–334

    Chapter  Google Scholar 

  44. B. Epel, S.V. Sundramoorthy, H.J. Halpern, 720 MHz pulse EPR imager with arbitrary waveform generator-based bridge and direct sampling. Appl. Magn. Reson. (2021). https://doi.org/10.1007/s00723-021-01315-4

    Article  Google Scholar 

  45. M.K. Bowman, M.D. Krzyaniak, A.A. Cruce, R.T. Weber, Skew projection of echo-detected EPR spectra for increased sensitivity and resolution. J. Magn. Reson. 231, 117–125 (2013). https://doi.org/10.1016/j.jmr.2013.03.011

    Article  ADS  Google Scholar 

  46. G.M. Zhidomirov, K.M. Salikhov, Modulation effects in free-radical spin-echo signals. Theoret. Exp. Chem. 4(4), 332–334 (1971). https://doi.org/10.1007/bf00524127

    Article  Google Scholar 

  47. G.M. Zhidomirov, K.M. Salikhov, Modulation effects in free-radical spin-echo signals. Teoreticheskaya I Eksperimental’naya Khimaya 4(4), 514–519 (1968)

    Google Scholar 

  48. J. Isoya, M.K. Bowman, J.R. Norris, J.A. Weil, An electron spin echo envelope modulation study of lithium nuclear hyperfine and quadrupole coupling in the A(Ti-Li) center of alpha-quartz. J. Chem. Phys. 78(4), 1735–1746 (1983)

    Article  ADS  Google Scholar 

  49. S. Lee, B.R. Patyal, J.H. Freed, A two-dimensional Fourier transform electron-spin resonance (ESR) study of nuclear modulation and spin relaxation in irradiated malonic acid. J. Chem. Phys. 98(5), 3665–3689 (1993). https://doi.org/10.1063/1.464044

    Article  ADS  Google Scholar 

  50. W.B. Mims, Amplitudes of superhyperfine frequencies displayed in the electron-spin-echo envelope. Phys. Rev. B 6(9), 3543–3545 (1972). https://doi.org/10.1103/PhysRevB.6.3543

    Article  ADS  Google Scholar 

  51. W.B. Mims, Envelope modulation in spin-echo experiments. Phys. Rev. B 5(7), 2409–2419 (1972). https://doi.org/10.1103/PhysRevB.5.2409

    Article  ADS  Google Scholar 

  52. A.G. Maryasov, M.K. Bowman, Unseen coherences can be felt. Appl. Magn. Reson. 48(11–12), 1447–1459 (2017). https://doi.org/10.1007/s00723-017-0949-y

    Article  Google Scholar 

  53. M.N. Uvarov, J. Behrends, A.G. Maryasov, L.V. Kulik, Origin of the Puzzling Narrow Line in the EPR Spectrum of Triplet C70. Appl. Magn. Reson. 47(7), 781–791 (2016). https://doi.org/10.1007/s00723-016-0791-7

    Article  Google Scholar 

  54. S.N. Trukhan, V.F. Yudanov, V.M. Tormyshev, O.Y. Rogozhnikova, D.V. Trukhin, M.K. Bowman, M.D. Krzyaniak, H. Chen, O.N. Martyanov, Hyperfine interactions of narrow-line trityl radical with solvent molecules. J. Magn. Reson. 233, 29–36 (2013). https://doi.org/10.1016/j.jmr.2013.04.017

    Article  ADS  Google Scholar 

  55. M.K. Bowman, C. Mailer, H.J. Halpern, The solution conformation of triarylmethyl radicals. J. Magn. Reson. 172(2), 254–267 (2005). https://doi.org/10.1016/j.jmr.2004.10.010

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported by the Ministry of Science and Higher Education of the Russian Federation (grant 14.W03.31.0034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander G. Maryasov.

Ethics declarations

Conflict of Interest

There are no conflicts.

Code availability: Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 198 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bowman, M.K., Maryasov, A.G. The Direct Dimension in Pulse EPR. Appl Magn Reson 52, 1041–1062 (2021). https://doi.org/10.1007/s00723-021-01362-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-021-01362-x

Navigation