Advertisement

Applied Magnetic Resonance

, Volume 50, Issue 1–3, pp 305–321 | Cite as

A Novel Approach to Interpretation of the Time-Dependent Self-Diffusion Coefficient: Water-Mouse RBCs Suspension Study

  • Valentin V. LoskutovEmail author
  • Vitaly I. Volkov
  • Irina A. Avilova
Original Paper
  • 50 Downloads

Abstract

Red Blood Cells (RBCs) are ideally suited as a model system for study of water diffusion in biological tissue. We used a pulsed-field-gradient nuclear magnetic resonance technique to measure the time-dependent self-diffusion coefficient D(t) in water-mouse RBC suspension at different diffusion times. A new method of interpretation of the experimental time dependence of the self-diffusion coefficient D(t) for fluid in heterogeneous media is proposed, and this study presents a new approximation describing water diffusion in such system. Three types of water were determined, which differs according to the self-diffusion coefficients: bulk water, extracellular and intracellular water. The water molecular exchange process among these three water states was investigated. The residence time for mice RBCs was obtained. Intracellular and extracellular water self-diffusion was restricted, and the sizes of restriction regions were 1.95 μm and 6.73 μm with S/V ratio 1.534 μm−1 and 0.44 μm−1, respectively. The cell wall permeability determined from the resident time as 4.7·10−5 m/s agreed with the permeability 5.4·10−5 m/s obtained from time dependence of intracellular water self-diffusion coefficient.

Notes

Acknowledgements

This work was supported by Russian Foundation for Basic Research (project no. 18-32-00815).

References

  1. 1.
    G. Benga, Eur. Biophys. J. 42, 33 (2013)CrossRefGoogle Scholar
  2. 2.
    J. Andrasko, Biochim. Biophys. Acta 428, 304 (1976)CrossRefGoogle Scholar
  3. 3.
    T.J. Larkin, P.W. Kuchel, Eur. Biophys. J. 39, 139 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    C. Anselmi, F. Bernardi, M. Centini, E. Gaggelli, N. Gaggelli, D. Valensin, G. Valensin, Chem. Phys. Lipids 134, 109 (2005)CrossRefGoogle Scholar
  5. 5.
    E. Dickinson, J.R.P. Arnold, J. Fisher, J. Biomol. NMR 67, 145 (2017)CrossRefGoogle Scholar
  6. 6.
    G.G. Cleveland, D.C. Chang, C.F. Hazlewood, H.E. Rorschach, Biophys. J. 16, 1043 (1976)ADSCrossRefGoogle Scholar
  7. 7.
    P. van Gelderen, D. DesPres, P.C. van Zijl, C.T. Moonen, J. Magn. Reson. B. 103, 255 (1994)CrossRefGoogle Scholar
  8. 8.
    E.E. Sigmund, D.S. Novikov, D. Sui, O. Ukpebor, S. Baete, J.S. Babb, K. Liu, T. Feiweierg, J. Kwon, K.A. McGorty, J. Bencardino, E. Fieremans, NMR Biomed. 27, 519 (2014)CrossRefGoogle Scholar
  9. 9.
    J. Pfeuffer, U. Flogel, W. Dreher, D. Leibfritz, NMR Biomed. 11, 19 (1998)CrossRefGoogle Scholar
  10. 10.
    D.G. Norris, T. Niendorf, D. Leibfritz, NMR Biomed. 7, 304 (1994)CrossRefGoogle Scholar
  11. 11.
    S. Lope-Piedrafita, M.L. Garcia-Martin, J.P. Galons, R.J. Gillies, T.P. Trouard, NMR Biomed. 21, 799 (2008)CrossRefGoogle Scholar
  12. 12.
    J. Karger, H. Pfeifer, W. Heink, Adv. Magn. Reson. 12, 1 (1988)CrossRefGoogle Scholar
  13. 13.
    P.T. Callaghan, A. Coy, D. MacGowan, K.J. Packer, F.O. Zelaya, Nature 351, 467 (1991)ADSCrossRefGoogle Scholar
  14. 14.
    A. Mitzithras, J.H. Strange, Magn. Res. Imaging 12, 261 (1994)CrossRefGoogle Scholar
  15. 15.
    L.L. Latour, K. Svoboda, P.P. Mitra, C.H. Sotak, Proc. Natl. Acad. Sci. USA 91(4), 1229 (1994)ADSCrossRefGoogle Scholar
  16. 16.
    K.G. Helmer, B.J. Dardzinski, C.H. Sotak, NMR Biomed. 8, 297 (1995)CrossRefGoogle Scholar
  17. 17.
    P.E. Thelwall, S.C. Grant, G.J. Stanisz, S.J. Blackband, Magn. Reson. Med. 48, 649 (2002)CrossRefGoogle Scholar
  18. 18.
    A.M. Babsky, S. Topper, H. Zhang, Y. Gao, J.R. James, S.K. Hekmatyar, N. Bansal, Magn. Reson. Med. 59, 485 (2008)CrossRefGoogle Scholar
  19. 19.
    I. Eslund, A. Nowacka, M. Nilsson, D. Topgaard, J. Magn. Reson. 200, 291 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    T. Sakai, H. Tochio, T. Tenno, Y. Ito, T. Kokubo, H. Hiroaki, M. Shirakawa, J. Biomol. NMR 36, 179 (2006)CrossRefGoogle Scholar
  21. 21.
    P.P. Mitra, P.N. Sen, L.M. Schwartz, P. Le Doussal, Phys. Rev. Lett. 68, 3555 (1992)ADSCrossRefGoogle Scholar
  22. 22.
    R. Valiullin, V. Skirda, J. Chem. Phys. 114, 452 (2001)ADSCrossRefGoogle Scholar
  23. 23.
    C.-H. Cho, Y.-S. Hong, K. Kang, V.I. Volkov, V. Skirda, C.-Y. Lee, C.-H. Lee, Magn. Reson. Imaging 21, 1009 (2003)CrossRefGoogle Scholar
  24. 24.
    -J. Ki, Y.-S. Suh, V.D. Hong, V.I. Skirda, C.-Y. Volkov, C.-H. Lee, Biophys. Chem. 104, 121 (2003)CrossRefGoogle Scholar
  25. 25.
    I.A. Avilova, A.V. Smolina, A.I. Kotelnikov, R.A. Kotelnikova, V.V. Loskutov, V.I. Volkov, Appl. Magn. Reson. 47, 335 (2016)CrossRefGoogle Scholar
  26. 26.
    V.V. Loskutov, J. Magn. Reson. 216, 192 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    P.T. Callaghan, Principles of Nuclear Magnetic Resonance Microscopy (Clarendon Press, Oxford, 1991), p. 492Google Scholar
  28. 28.
    T.M. de Swiet, P.N. Sen, J. Chem. Phys. 104, 206 (1996)ADSCrossRefGoogle Scholar
  29. 29.
    P.N. Sen, Concepts Magn. Reson. 23A, 1 (2004)CrossRefGoogle Scholar
  30. 30.
    P.N. Sen, L.M. Schwartz, P.P. Mitra, Magn. Reson. Imaging 12, 227 (1994)CrossRefGoogle Scholar
  31. 31.
    L.L. Latour, P.P. Mitra, R.L. Kleinberg, C.H. Sotak, J. Magn. Reson. A. 101, 342 (1993)ADSCrossRefGoogle Scholar
  32. 32.
    V.V. Loskutov, V.A. Sevriugin, J. Magn. Reson. 230, 1 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    V.A. Sevrugin, V.V. Loskutov, N.E. Zhuravlyova, Appl. Magn. Reson. 29, 523 (2005)CrossRefGoogle Scholar
  34. 34.
    D.A. Fedosov, H. Noguchi, G. Gompper, Biomech. Model. Mechanobiol. 13, 239 (2014)CrossRefGoogle Scholar
  35. 35.
    V.V. Loskutov, V.A. Sevriugin, J. Por. Media 12, 29 (2009)Google Scholar
  36. 36.
    O. Linderkamp, P.Y.K. Wu, H.J. Meiselman, Pediatr. Res. 17, 250 (1983)CrossRefGoogle Scholar
  37. 37.
    K.G. Engstrom, I.B. Taljedal, Acta Physiol. Scand. 130, 535 (1987)CrossRefGoogle Scholar
  38. 38.
    J.E. Tanner, J. Chem. Phys. 69, 1748 (1978)ADSCrossRefGoogle Scholar
  39. 39.
    W.L.C. Vaz, R.M. Clegg, D. Hallmann, Biochemistry 24, 781 (1985)CrossRefGoogle Scholar
  40. 40.
    J.E. McCarthy, J.J. Kozak, J. Chem. Phys. 77, 2214 (1982)ADSCrossRefGoogle Scholar
  41. 41.
    V.V. Loskutov, E.P. Petrov, Appl. Magn. Reson. 45, 1389 (2014)CrossRefGoogle Scholar
  42. 42.
    R.R. Valiullin, V.D. Skirda, S. Stapf, R. Kimmich, Phys. Rev. E 55, 2664 (1996)ADSCrossRefGoogle Scholar
  43. 43.
    M. Shporer, M.M. Civan, Biochim. Biophys. Acta 385, 81 (1975)CrossRefGoogle Scholar
  44. 44.
    M.D. Herbst, J.H. Goldstein, Am. J. Physiol. 256, 1097 (1989)CrossRefGoogle Scholar
  45. 45.
    G. Benga, H. Matei, T. Borza, D. Porutiu, C. Lupse, Comp. Biochem. Physiol. 104A, 491 (1993)CrossRefGoogle Scholar
  46. 46.
    A. Filippov, G. Oradd, G. Lindblom, Biophys. J. 84, 3079 (2003)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Physics DepartmentMari State UniversityYoshka-OlaRussia
  2. 2.Institute of Problems of Chemical Physics RASChernogolovkaRussia
  3. 3.Science Center in Chernogolovka RASChernogolovkaRussia

Personalised recommendations