Skip to main content

Advertisement

Log in

Design and Implementation of a Robust NMR Fluid Analyzer with Multiple Antennas

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

During last 20 years, nuclear magnetic resonance (NMR) fluid analyzer is becoming a usual instrument to conduct researches to fluids several thousand meters underground in real time due to its nondestructive, rapid, and repeatable characteristics. In this paper, a new set of down-hole NMR fluid analyzer was designed and implemented. The probe of the analyzer employs special ring-shaped magnets which can be fastened to a high permeability material with a card slot. This design can decrease the twist between adjacent magnet blocks and obtain a homogeneous magnetic field. Meanwhile, in the axis direction, a stabilization section was added to the polarized magnets for improving the polarization efficiency. Furthermore, the system adopts a multiple antenna structure, by which it can achieve multi-parameter and multi-function measurements. To match with the antenna structure, an antenna control module was put to the circuit system to quickly switch the working antenna. Then, the performance of this new designed system was validated by both stationary and flow fluid. In the future, the analyzer can be combined with the formation tester for down-hole fluid analysis or used independently for ground fluid analysis during oil exploitation and transportation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. G.R. Coates, L.Z. Xiao, M.G. Prammer, NMR Logging: Principles and Applications (Gulf Professional Publishing, Houston, TX, 1999)

    Google Scholar 

  2. R.K. Cooper, J.A. Jackson, J. Magn. Reson. 41, 400–405 (1980)

    ADS  Google Scholar 

  3. J.A. Jackson, L.J. Burnett, J.F. Harmon, J. Magn. Reson. 41, 411–421 (1980)

    ADS  Google Scholar 

  4. M.G. Prammer, J.C. Bouton, R.N. Chandler, E.D. Drack, M.N. Miller, in Proceedings of the SPE Annual Technical Conference and Exhibition (New Orleans, Louisiana, 27–30 September 1998)

  5. R.L. Kleinberg, A. Sezginer, D.D. Griffin, M. Fukuhara, J. Magn. Reson. 97, 466–485 (1992)

    ADS  Google Scholar 

  6. S. Chen, D. Beard, M. Gillen, S. Fang, G. Zhang, in Proceedings of the 44th SPWLA Annual Logging Symposium (Galveston, Texas, 22–25 June 2003)

  7. R.L. Kleinberg. US patent, 6346813B1 (2002)

  8. C. Dong, M.D. O’Keefe, H. Elshahawi, M. Hashem, S.M. Williams, D. Stensland, P.S. Hegeman, R.R. Vasques, T. Terabayashi, E. Donzier. SPE Reserv. Eval. Eng, 108566 (2007)

  9. C.M. Edwards, O.N. Fanini, S.W. Forgang. US patent, 006111409A (2000)

  10. M.G. Prammer, J. Bouton, P. Masak, in Proceedings of the SPWLA 42nd Annual Logging Symposium (Houston, Texas, 17–20 June 2001)

  11. T. Blades, M. G. Prammer. US patent, 006111408A (2000)

  12. J. Hogendoorn, A. Boer, M. Appel, H. Jong, R. Leeuw, in Proceedings of the 31st International North Sea Flow Measurement Workshop (Tønsberg, Norway, 22–25 October 2013)

  13. M. Appel, J. Freeman, D. Pusiol, in Proceedings of the SPE Middle East Oil and Gas Show and Conference (Manama, Bahrain, 25–28 September 2011), SPE 141465

  14. K.T. O’Neill, E.O. Fridjonsson, P.L. Stanwix, M.L. Johns, J. Magn. Reson. 269, 179–185 (2016)

    Article  ADS  Google Scholar 

  15. B.S. Wu, L.Z. Xiao, X. Li, H.J. Yu, T. L. A. Petrol. Sci. 9, 38–45 (2012)

  16. F. Deng, L.Z. Xiao, W.L. Chen, H.B. Liu, G.Z. Liao, M.Y. Wang, Q.M. Xie, J. Magn. Reson. 247, 1–8 (2014)

    Article  ADS  Google Scholar 

  17. F. Deng, L.Z. Xiao, G.Z. Liao, F.R. Zong, W.L. Chen, Appl. Magn. Reson. 45, 179–192 (2014)

    Article  Google Scholar 

  18. V. Demas, P.L. Prado, Concepts Magn. Reson. 2009(34A), 48–59 (2009)

    Article  Google Scholar 

  19. X. Li, Z.Z. Wang, S.G. Li, L.Z. Xiao, J. China Univ. Pet. 38, 75–81 (2014)

    Google Scholar 

  20. L.Z. Xiao, G.Z. Liao, F. Deng, H.B. Liu, G.P. Song, M.C. Li, Micropor. Mesopor. Mat. 205, 16–20 (2015)

    Article  Google Scholar 

  21. H.C. Torrey, Phys. Rev. 104, 563–565 (1956)

    Article  ADS  Google Scholar 

  22. Y.Q. Song, L. Venkataramanan, M.D. Hürlimann, M. Flaum, C. Straley, J. Magn. Reson. 154, 261–268 (2002)

    Article  ADS  Google Scholar 

  23. A. Caprihan, E. Fukushima, Phys. Rep. 198, 195–235 (1990)

    Article  ADS  Google Scholar 

  24. F. Deng, L.Z. Xiao, H.B. Liu, T.L. An, M.Y. Wang, Z.F. Zhang, W. Xu, J.J. Cheng, Q.M. Xie, V. Anferov, Appl. Magn. Reson. 44, 1053–1065 (2013)

    Article  Google Scholar 

  25. T.M. Osán, J.M. Ollé, M. Carpinella, L.M.C. Cerioni, D.J. Pusiol, M. Appel, J. Freeman, I. Espejo, J. Magn. Reson. 209, 116–122 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 21427812), National “111 Project” (B13010), Beijing Science and Technology Project (Z161100004816004) and ‘‘863 Project’’ (2013AA064605).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lizhi Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Xiao, L., Liu, H. et al. Design and Implementation of a Robust NMR Fluid Analyzer with Multiple Antennas. Appl Magn Reson 50, 263–275 (2019). https://doi.org/10.1007/s00723-018-1099-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-018-1099-6

Navigation