Advertisement

Applied Magnetic Resonance

, Volume 50, Issue 1–3, pp 263–275 | Cite as

Design and Implementation of a Robust NMR Fluid Analyzer with Multiple Antennas

  • Weiliang Chen
  • Lizhi XiaoEmail author
  • Huabing Liu
  • Guangzhi Liao
  • Wei Liu
  • Yan Zhang
  • Qian Wu
  • Zhe Sun
  • Wenbin Zheng
Original Paper

Abstract

During last 20 years, nuclear magnetic resonance (NMR) fluid analyzer is becoming a usual instrument to conduct researches to fluids several thousand meters underground in real time due to its nondestructive, rapid, and repeatable characteristics. In this paper, a new set of down-hole NMR fluid analyzer was designed and implemented. The probe of the analyzer employs special ring-shaped magnets which can be fastened to a high permeability material with a card slot. This design can decrease the twist between adjacent magnet blocks and obtain a homogeneous magnetic field. Meanwhile, in the axis direction, a stabilization section was added to the polarized magnets for improving the polarization efficiency. Furthermore, the system adopts a multiple antenna structure, by which it can achieve multi-parameter and multi-function measurements. To match with the antenna structure, an antenna control module was put to the circuit system to quickly switch the working antenna. Then, the performance of this new designed system was validated by both stationary and flow fluid. In the future, the analyzer can be combined with the formation tester for down-hole fluid analysis or used independently for ground fluid analysis during oil exploitation and transportation.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 21427812), National “111 Project” (B13010), Beijing Science and Technology Project (Z161100004816004) and ‘‘863 Project’’ (2013AA064605).

References

  1. 1.
    G.R. Coates, L.Z. Xiao, M.G. Prammer, NMR Logging: Principles and Applications (Gulf Professional Publishing, Houston, TX, 1999)Google Scholar
  2. 2.
    R.K. Cooper, J.A. Jackson, J. Magn. Reson. 41, 400–405 (1980)ADSGoogle Scholar
  3. 3.
    J.A. Jackson, L.J. Burnett, J.F. Harmon, J. Magn. Reson. 41, 411–421 (1980)ADSGoogle Scholar
  4. 4.
    M.G. Prammer, J.C. Bouton, R.N. Chandler, E.D. Drack, M.N. Miller, in Proceedings of the SPE Annual Technical Conference and Exhibition (New Orleans, Louisiana, 27–30 September 1998)Google Scholar
  5. 5.
    R.L. Kleinberg, A. Sezginer, D.D. Griffin, M. Fukuhara, J. Magn. Reson. 97, 466–485 (1992)ADSGoogle Scholar
  6. 6.
    S. Chen, D. Beard, M. Gillen, S. Fang, G. Zhang, in Proceedings of the 44th SPWLA Annual Logging Symposium (Galveston, Texas, 22–25 June 2003)Google Scholar
  7. 7.
    R.L. Kleinberg. US patent, 6346813B1 (2002)Google Scholar
  8. 8.
    C. Dong, M.D. O’Keefe, H. Elshahawi, M. Hashem, S.M. Williams, D. Stensland, P.S. Hegeman, R.R. Vasques, T. Terabayashi, E. Donzier. SPE Reserv. Eval. Eng, 108566 (2007)Google Scholar
  9. 9.
    C.M. Edwards, O.N. Fanini, S.W. Forgang. US patent, 006111409A (2000)Google Scholar
  10. 10.
    M.G. Prammer, J. Bouton, P. Masak, in Proceedings of the SPWLA 42nd Annual Logging Symposium (Houston, Texas, 17–20 June 2001)Google Scholar
  11. 11.
    T. Blades, M. G. Prammer. US patent, 006111408A (2000)Google Scholar
  12. 12.
    J. Hogendoorn, A. Boer, M. Appel, H. Jong, R. Leeuw, in Proceedings of the 31st International North Sea Flow Measurement Workshop (Tønsberg, Norway, 22–25 October 2013)Google Scholar
  13. 13.
    M. Appel, J. Freeman, D. Pusiol, in Proceedings of the SPE Middle East Oil and Gas Show and Conference (Manama, Bahrain, 25–28 September 2011), SPE 141465Google Scholar
  14. 14.
    K.T. O’Neill, E.O. Fridjonsson, P.L. Stanwix, M.L. Johns, J. Magn. Reson. 269, 179–185 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    B.S. Wu, L.Z. Xiao, X. Li, H.J. Yu, T. L. A. Petrol. Sci. 9, 38–45 (2012)Google Scholar
  16. 16.
    F. Deng, L.Z. Xiao, W.L. Chen, H.B. Liu, G.Z. Liao, M.Y. Wang, Q.M. Xie, J. Magn. Reson. 247, 1–8 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    F. Deng, L.Z. Xiao, G.Z. Liao, F.R. Zong, W.L. Chen, Appl. Magn. Reson. 45, 179–192 (2014)CrossRefGoogle Scholar
  18. 18.
    V. Demas, P.L. Prado, Concepts Magn. Reson. 2009(34A), 48–59 (2009)CrossRefGoogle Scholar
  19. 19.
    X. Li, Z.Z. Wang, S.G. Li, L.Z. Xiao, J. China Univ. Pet. 38, 75–81 (2014)Google Scholar
  20. 20.
    L.Z. Xiao, G.Z. Liao, F. Deng, H.B. Liu, G.P. Song, M.C. Li, Micropor. Mesopor. Mat. 205, 16–20 (2015)CrossRefGoogle Scholar
  21. 21.
    H.C. Torrey, Phys. Rev. 104, 563–565 (1956)ADSCrossRefGoogle Scholar
  22. 22.
    Y.Q. Song, L. Venkataramanan, M.D. Hürlimann, M. Flaum, C. Straley, J. Magn. Reson. 154, 261–268 (2002)ADSCrossRefGoogle Scholar
  23. 23.
    A. Caprihan, E. Fukushima, Phys. Rep. 198, 195–235 (1990)ADSCrossRefGoogle Scholar
  24. 24.
    F. Deng, L.Z. Xiao, H.B. Liu, T.L. An, M.Y. Wang, Z.F. Zhang, W. Xu, J.J. Cheng, Q.M. Xie, V. Anferov, Appl. Magn. Reson. 44, 1053–1065 (2013)CrossRefGoogle Scholar
  25. 25.
    T.M. Osán, J.M. Ollé, M. Carpinella, L.M.C. Cerioni, D.J. Pusiol, M. Appel, J. Freeman, I. Espejo, J. Magn. Reson. 209, 116–122 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Weiliang Chen
    • 1
  • Lizhi Xiao
    • 1
    • 2
    Email author
  • Huabing Liu
    • 3
  • Guangzhi Liao
    • 1
  • Wei Liu
    • 1
  • Yan Zhang
    • 1
  • Qian Wu
    • 1
  • Zhe Sun
    • 1
  • Wenbin Zheng
    • 1
  1. 1.State Key Laboratory of Petroleum Resources and Prospecting, College of Geophysics and Information EngineeringChina University of PetroleumBeijingChina
  2. 2.Harvard SEAS-CUPB Joint Laboratory on Petroleum ScienceCambridgeUSA
  3. 3.Beijing Limecho Technology Limited CompanyBeijingChina

Personalised recommendations