Skip to main content
Log in

63,65Cu NMR Study of the Short-Range Ordered State of Multiferroic CuFeO2

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The 63,65Cu nuclear magnetic resonance (NMR) spectra have been obtained in the external magnetic field H0 = 11.7 T at the temperature range from 20 to 350 K and the static magnetic susceptibility, χ(T), has been measured in single-crystalline CuFeO2. The temperature dependences of the 63,65Cu NMR line shifts, K(T), and the magnetic susceptibility, χ(T), can be satisfactorily described by Curie–Weiss law at T > 60 K. It is worth noting that the behavior of K(T) and χ(T) is different below T = 60 K. The deviation of K(T) from the Curie–Weiss law indicates the short-range order at T < 60 K in CuFeO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A.J. Freeman, H. Schmid, Magnetoelectric Interaction Phenomena in Crystals (Gordon & Breach, London, 1975), p. 228

    Google Scholar 

  2. S.-W. Cheong, M. Mostovoy, Nat. Mater. 6, 13 (2007)

    Article  ADS  Google Scholar 

  3. D. Khomskii, Physics 2, 20 (2009)

    Article  Google Scholar 

  4. T. Kimura, J.C. Lashley, A.P. Ramirez, Phys. Rev. B 73, 220401 (2006)

    Article  ADS  Google Scholar 

  5. F. Ye, Y. Ren, Q. Huang, J.A. Fernandez-Baca, P. Dai, J.W. Lynn, T. Kimura, Phys. Rev. B 73, 220404R (2006)

    Article  ADS  Google Scholar 

  6. M. Mekata, N. Yaguchi, T. Takagi, S. Mitsuda, H. Yoshizawa, J. Magn. Magn. Mater. 104–107, 823 (1992)

    Article  ADS  Google Scholar 

  7. G. Quirion, M.L. Plumer, O.A. Petrenko, G. Balakrishnan, C. Proust, Phys. Rev. B 80, 064420 (2009)

    Article  ADS  Google Scholar 

  8. T.T.A. Lummen, C. Strohm, H. Rakoto, P.H.M. van Loosdrecht, Phys. Rev. B 81, 224420 (2010)

    Article  ADS  Google Scholar 

  9. O.A. Petrenko, M.R. Lees, G. Balakrishnan, S. de Brion, G. Chouteau, J. Phys. Condens. Matter. 17, 2741 (2005)

    Article  ADS  Google Scholar 

  10. T. Nakajima, S. Mitsuda, K. Takahashi, M. Yamano, K. Masuda, H. Yamazaki, K. Prokes, K. Kiefer, S. Gerischer, N. Terada, H. Kitazawa, M. Matsuda, K. Kakurai, H. Kimura, Y. Noda, M. Soda, M. Matsuura, K. Hirota, Phys. Rev. B 79, 214423 (2009)

    Article  ADS  Google Scholar 

  11. K. Hayashi, T. Nozaki, R. Fukatsu, Y. Miyazaki, T. Kajitani, Phys. Rev. B 80, 144413 (2009)

    Article  ADS  Google Scholar 

  12. H. Katsura, N. Nagaosa, A.V. Balatsky, Phys. Rev. Lett. 95, 057205 (2005)

    Article  ADS  Google Scholar 

  13. T. Arima, J. Phys. Soc. Jpn. 76, 073702 (2007)

    Article  ADS  Google Scholar 

  14. V.V. Ogloblichev, A.G. Smolnikov, A.F. Sadykov, Y.V. Piskunov, A.P. Gerashenko, Y. Furukawa, K. Kumagai, AYu. Yakubovsky, K.N. Mikhalev, S.N. Barilo, S.V. Shiryaev, A.S. Belozerov, J. Magn. Magn. Mater. 458, 1 (2018)

    Article  ADS  Google Scholar 

  15. R. Nath, R.M. Ranjith, B. Roy, D.C. Johnston, Y. Furukawa, A.A. Tsirlin, Phys. Rev. B 90, 024431 (2014)

    Article  ADS  Google Scholar 

  16. V. Ogloblichev, K. Kumagai, S. Verkhovskii, A. Yakubovsky, K. Mikhalev, Yu. Furukawa, A. Gerashenko, A. Smolnikov, S. Barilo, G. Bychkov, S. Shiryaev, Phys. Rev. B 81, 144404 (2010)

    Article  ADS  Google Scholar 

  17. A.G. Smol’nikov, V.V. Ogloblichev, AYu. Germov, K.N. Mikhalev, A.F. Sadykov, Y.V. Piskunov, A.P. Gerashchenko, A.Y. Yakubovskii, M.A. Muflikhonova, S.N. Barilo, S.V. Shiryaev, J. Exp. Theor. Phys. Lett. 107, 134 (2018)

    Article  Google Scholar 

  18. P. Dordor, J.P. Chaminade, A. Wichainchai, E. Marquestaut, J.P. Doumerc, M. Pouchard, P. Hagenmuller, J. Solid State Chem. 75, 105 (1988)

    Article  ADS  Google Scholar 

  19. T.-R. Zhao, M. Hasegawa, H. Takei, J. Cryst. Growth 154, 322 (1995)

    Article  ADS  Google Scholar 

  20. T.C. Farrar, E.D. Becker, Pulse and Fourier Transform NMR (Academic Press, New York, 1971), p. 118

    Google Scholar 

  21. R.R. Ernst, G. Bodenhausen, A. Wokaun, Principles of Nuclear Magnetic Resonance in One and Two Dimensions (Clarendon Press, Oxford, 1987), p. 610

    Google Scholar 

  22. A.F. Sadykov, A.P. Gerashchenko, Y.V. Piskunov, V.V. Ogloblichev, A.G. Smol’nikov, S.V. Verkhovskii, A.Y. Yakubovskii, E.A. Tishchenko, A.A. Bush, J. Exp. Theor. Phys. 115, 666 (2012)

    Article  ADS  Google Scholar 

  23. A.G. Smol’nikov, V.V. Ogloblichev, S.V. Verkhovskii, K.N. Mikhalev, A.Y. Yakubovskii, Y. Furukawa, Y.V. Piskunov, A.F. Sadykov, S.N. Barilo, S.V. Shiryaev, Phys. Metals Metallogr. 118, 134 (2017)

    Article  ADS  Google Scholar 

  24. A.G. Smol’nikov, V.V. Ogloblichev, S.V. Verkhovskii, K.N. Mikhalev, A.Y. Yakubovskii, K. Kumagai, Y. Furukawa, A.F. Sadykov, Y.V. Piskunov, A.P. Gerashchenko, S.N. Barilo, S.V. Shiryaev, J. Exp. Theor. Phys. Lett. 102, 674 (2015)

    Article  Google Scholar 

  25. A. Abragam, The Principles of Nuclear Magnetism (Clarendon Press, Oxford, 1961), p. 599

    Google Scholar 

  26. C.P. Slichter, Principles of Magnetic Resonance (Harper & Row, New York, 1963), p. 246

    Google Scholar 

  27. V.I. Chizhik, Y.S. Chernyshev, A.V. Donets, V. Frolov, A. Komolkin, M.G. Shelyapina, Magnetic Resonance and Its Applications (Springer, Berlin, 2014), p. 782

    Book  Google Scholar 

  28. J. Freeman, B. Frankel, Hyperfine Interactions (Academic Press, London, 1967), p. 758

    Google Scholar 

  29. F. Mila, T.M. Rice, Phys. C 157, 561 (1989)

    Article  ADS  Google Scholar 

  30. A.F. Sadykov, Y.V. Piskunov, A.P. Gerashchenko, V.V. Ogloblichev, A.G. Smol’nikov, S.V. Verkhovskii, I.Y. Arapova, Z.N. Volkova, K.N. Mikhalev, A.A. Bush, J. Exp. Theor. Phys. 124, 286 (2017)

    Article  ADS  Google Scholar 

  31. T. Fukuda, H. Nojiri, M. Motokawa, T. Asano, M. Mekata, Y. Ajiro, Phys. B Condens. Matter 246/247, 569 (1998)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The research was supported by Russian Science Foundation (project no. 16-12-10514).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasily V. Ogloblichev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogloblichev, V.V., Smolnikov, A.G., Germov, A.Y. et al. 63,65Cu NMR Study of the Short-Range Ordered State of Multiferroic CuFeO2. Appl Magn Reson 50, 371–379 (2019). https://doi.org/10.1007/s00723-018-1087-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-018-1087-x

Navigation