Applied Magnetic Resonance

, Volume 50, Issue 1–3, pp 171–185 | Cite as

Interaction Kinetics of Sulfadiazine and N-Acetyl-sulfadiazine with Soil Humic Acid: ESR Investigations with Nitroxide Spin Label

  • Adrian Ricke
  • Elena Bondarenko
  • Györgyi Úr
  • Tamás Kálai
  • Kálmán Hideg
  • Heinz-Jürgen Steinhoff
  • Michael MatthiesEmail author
Original Paper


The interaction of sulfadiazine (SDZ) and its main metabolite N-acetyl-SDZ (N-ac-SDZ) with model humic acid was investigated with stable paramagnetic nitroxide spin probes. Leonardite humic acid (LHA) was mixed with laccase to enhance the amount of reactive quinone groups of LHA and then incubated with nitroxide spin-labelled analogs of SDZ and N-ac-SDZ. The labeling at the pyrimidine moiety of SDZ leaves the aniline moiety susceptible to covalent binding to LHA, which is blocked by the N-acetylation. A broadened electron spin resonance (ESR) signal was observed for SDZ, which increased immediately after incubation and indicates strong restriction of the re-orientational motion of the spin probe, i.e., immobilization due covalent binding of the aniline moiety of SDZ to reactive quinone sites of LHA. A fast first-order reaction with a time constant of 17.6 ± 3.4 h of covalent binding was determined. The broadened ESR signal of N-ac-SDZ declined immediately after incubation with LHA and is caused by unspecific sorption to LHA, not by covalent binding. Short time constants of the bound and free SDZ were found for the reduction by the antioxidant sodium ascorbate demonstrating that SDZ and N-ac-SDZ are not physically entrapped by LHA.



The study was partly financed by the Higher Education Institutional Excellence Programme of the Ministry of Human Capacities in Hungary, within the framework of the 20765-3/2018/FEKUTSTRAT Innovation for sustainable and healthy living and environment thematic programme of the University of Pécs.

Compliance with Ethical Standards

Conflict of Interest

The authors declare no competing financial interest.

Supplementary material

723_2018_1082_MOESM1_ESM.docx (48 kb)
Supplementary material 1 (DOCX 48 kb)


  1. 1.
    Sales of veterinary antimicrobial agents in 30 European countries in 2015 (EMA/184855/2017). (European Medicines Agency, London, 2017), Accessed 18 Jun 2018
  2. 2.
    Critically important antimicrobials for human medicine—5th rev. (World Health Organization, Geneva, 2017), Accessed 18 Jun 2018
  3. 3.
    S. Jechalke, H. Heuer, J. Siemens, W. Amelung, K. Smalla, Trends Microbiol. 22, 536 (2014)CrossRefGoogle Scholar
  4. 4.
    B. Gevao, K. Semple, K.C. Jones, Environ. Pollut. 108, 3 (2000)CrossRefGoogle Scholar
  5. 5.
    H. Heuer, A. Focks, M. Lamshöft, K. Smalla, M. Matthies, M. Spiteller, Soil Biol. Biochem. 40, 1892 (2008)CrossRefGoogle Scholar
  6. 6.
    M. Förster, V. Laabs, M. Lamshöft, J. Groeneweg, M. Krauss, M. Kaupenjohann, W. Amelung, Environ. Sci. Technol. 43, 1824 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    C. Zarfl, J. Klasmeier, M. Matthies, Chemosphere 77, 720 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    R. Kreuzig, S. Höltge, Environ. Toxicol. Chem. 24, 771 (2005)CrossRefGoogle Scholar
  9. 9.
    T. Müller, I. Rosendahl, A. Focks, J. Siemens, J. Klasmeier, M. Matthies, Environ. Pollut. 172, 180 (2013)CrossRefGoogle Scholar
  10. 10.
    F. Führ, H. Ophoff, P. Burauel, U. Wanner, K. Haider, Modification of Definition of Bound Residues, in Pesticide Bound Residues in Soil, ed. by F. Führ, H. Ophoff (Wiley-VCH, Weinheim, 1998), pp. 175–176Google Scholar
  11. 11.
    B. Gevao, K.C. Jones, K. Semple, A. Craven, P. Burauel, Environ. Sci. Technol. 37, 139A (2003)CrossRefGoogle Scholar
  12. 12.
    Understanding the relationship between extraction technique and bioavailability. (European Centre for Ecotoxicology and Toxicology of Chemicals, Brussels, 2013), Accessed 18 Jun 2018
  13. 13.
    M. Kästner, K.M. Nowak, A. Miltner, S. Trapp, A. Schäffer, Crit. Rev. Environ. Sci. Technol. 44, 2107 (2013)CrossRefGoogle Scholar
  14. 14.
    A. Eschenbach, Characterization of non extractable residues for their risk assessment in soil with special regard to pharmaceuticals. (Umweltbundesamt, Dessau-Rosslau, 2013), Accessed 18 Jun 2018
  15. 15.
    H.M. Bialk, A.J. Simpson, J.A. Pedersen, Environ. Sci. Technol. 39, 4463 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    H.M. Bialk, C. Hedman, A. Castillo, J.A. Pedersen, Environ. Sci. Technol. 15, 3593 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    H.M. Bialk, J.A. Pedersen, Environ. Sci. Technol. 42, 106 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    A. Gulkowska, M. Sander, D. Rentsch, J. Hollender, Environ. Sci. Technol. 46, 2102 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    A. Berns, H. Philipp, H. Lewandoswski, J.-H. Choi, M. Lamshöft, H.-D. Narres, Environ. Sci. Technol. 52, 3748 (2018)CrossRefGoogle Scholar
  20. 20.
    J.P. Klare, H.-J. Steinhoff, Photosynth. Res. 102, 377 (2009)CrossRefGoogle Scholar
  21. 21.
    J.P. Klare, H.J. Steinhoff, Structural Information from Spin-Labels and Intrinsic Paramagnetic Centres in the Biosciences, in Structure and Bonding, 152nd edn., ed. by C.R. Timmel, J.R. Harmer (Springer, Berlin, 2013), pp. 205–248Google Scholar
  22. 22.
    P. Franchi, M. Lucarini, P. Pedrielli, G.F. Pedulli, Chem. Phys. Chem. 3, 789 (2002)CrossRefGoogle Scholar
  23. 23.
    A.D. Steen, C. Arnosti, L. Ness, N.V. Blough, Mar. Chem. 101, 266 (2006)CrossRefGoogle Scholar
  24. 24.
    C. Lattao, X. Cao, Y. Li, J. Mao, K. Schmidt-Rohr, M.A. Chapell, L.F. Miller, A.L. dela Cruz, J.J. Pignatello, Environ. Sci. Technol. 46, 12814 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    A. Dumestre, M. McBride, P. Baveye, Environ. Sci. Technol. 34, 1259 (2000)ADSCrossRefGoogle Scholar
  26. 26.
    A. Dumestre, M. Spagnuolo, R. Bladon, J. Berthelin, P. Baveye, Environ. Pollut. 143, 73 (2006)CrossRefGoogle Scholar
  27. 27.
    M. Spagnuolo, A.R. Jacobson, P. Baveye, Environ. Toxicol. Chem. 24, 2435 (2005)CrossRefGoogle Scholar
  28. 28.
    M. Matthies, K. Glinka, M. Theiling, K. Hideg, H.-J. Steinhoff, Appl. Magn. Reson. 47, 627 (2016)CrossRefGoogle Scholar
  29. 29.
    G. Úr, G. Gulyás-Fekete, J. Jeköc, K. Hideg, T. Kálai, Synthesis 49, 3740 (2017)CrossRefGoogle Scholar
  30. 30.
    A.A. Bobko, I.A. Kirilyuk, I.A. Grigor’ev, J.L. Zweier, V.V. Khramtsov, Free Rad. Biol. Med. 42, 404 (2007)Google Scholar
  31. 31.
    J.H. Freed, in Spin Labeling: Theory and Applications, ed. by L.J. Berliner (Academic Press, New York, 1976), pp. 53–132Google Scholar
  32. 32.
    D.E. Budil, S. Lee, S. Saxena, J.H. Freed, J. Magn. Reson. Ser. A 120, 155 (1996)ADSCrossRefGoogle Scholar
  33. 33.
    L.J. Berliner (ed.), Spin Labeling: Theory and Applications (Academic Press, New York, 1976)Google Scholar
  34. 34.
    A. Gulkowska, M. Sander, J. Hollender, M. Krauss, Environ. Sci. Technol. 47, 6916 (2013)ADSCrossRefGoogle Scholar
  35. 35.
    J. Gao, J.A. Pedersen, J. Environ. Qual. 39, 228 (2010)CrossRefGoogle Scholar
  36. 36.
    M. Loos, M. Krauss, K. Fenner, Environ. Sci. Technol. 46, 9830 (2012)Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Adrian Ricke
    • 1
  • Elena Bondarenko
    • 1
  • Györgyi Úr
    • 2
  • Tamás Kálai
    • 2
  • Kálmán Hideg
    • 2
  • Heinz-Jürgen Steinhoff
    • 1
  • Michael Matthies
    • 3
    Email author
  1. 1.Physics DepartmentUniversity of OsnabrückOsnabrückGermany
  2. 2.Institute of Organic and Medicinal ChemistryUniversity of PécsPécsHungary
  3. 3.Institute of Environmental Systems ResearchUniversity of OsnabrückOsnabrückGermany

Personalised recommendations