Skip to main content
Log in

Nitroxide Spin Labels—Magnetic Parameters and Hydrogen-Bond Formation: A High-Field EPR and EDNMR Study

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

In this work, we report on a detailed high-field EPR investigation of magnetic parameters of deuterated nitroxide radicals dissolved in deuterated frozen solvents of polar or unpolar, protic or aprotic character including ortho-terphenyl, methanol, propanol, glycerol, aniline, phenol, and water. The analysis of the high-resolution W-band (95 GHz) pulsed ELDOR-detected NMR (EDNMR) and 244 GHz cw EPR spectra yielded precise electron Zeeman, gxx, 14N hyperfine, Azz, and 14N quadrupole, Pzz, tensor components, which are most sensitive probes for the microenvironment of dissolved nitroxide radicals. Remarkable changes in the solvation networks were found in the various matrices. The solvent-dependent magnetic parameters of the nitroxide are discussed on the basis of previous semi-empirical and DFT quantum chemical calculations in an attempt to adequately model the nitroxide–matrix interactions. The obtained results demonstrate that the principal values of all the magnetic interaction parameters primarily depend on the nitroxide hydrogen-bond situation and the type of hydrogen-bond donor group of the solvent. The solvent bulk polarity, as described by the static dielectric constant, is of minor importance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H.J. Steinhoff, A. Savitsky, C. Wegener, M. Pfeiffer, M. Plato, K. Möbius, Biochim. Biophys. Acta 1457, 253–262 (2000)

    Article  Google Scholar 

  2. E. Bordignon, H. Brutlach, L. Urban, K. Hideg, A. Savitsky, A. Schnegg, P. Gast, M. Engelhard, E.J.J. Groenen, K. Möbius, H.J. Steinhoff, Appl. Magn. Reson. 37, 391–403 (2010)

    Article  Google Scholar 

  3. M. Plato, H.J. Steinhoff, C. Wegener, J.T. Torring, A. Savitsky, K. Möbius, Mol. Phys. 100, 3711–3721 (2002)

    Article  ADS  Google Scholar 

  4. A. Savitsky, A.A. Dubinskii, M. Plato, Y.A. Grishin, H. Zimmermann, K. Möbius, J. Phys. Chem. B 112, 9079–9090 (2008)

    Article  Google Scholar 

  5. P. Gast, R.T.L. Herbonnet, J. Klare, A. Nalepa, C. Rickert, D. Stellinga, L. Urban, K. Möbius, A. Savitsky, H.J. Steinhoff, E.J.J. Groenen, Phys. Chem. Chem. Phys. 16, 15910–15916 (2014)

    Article  Google Scholar 

  6. T. Kawamura, S. Matsunam, T. Yonezawa, Bull. Chem. Soc. Jpn. 40, 1111–1115 (1967)

    Article  Google Scholar 

  7. O.H. Griffith, P.J. Dehlinger, S.P. Van, J. Membr. Biol. 15, 159–192 (1974)

    Article  Google Scholar 

  8. B.R. Knauer, J.J. Napier, J. Am. Chem. Soc. 98, 4395–4400 (1976)

    Article  Google Scholar 

  9. A.H. Reddoch, S. Konishi, J. Chem. Phys. 70, 2121–2130 (1979)

    Article  ADS  Google Scholar 

  10. N.A. Sysoeva, A.U. Stepanyants, A.L. Buchachenko, J. Struct. Chem. 9, 248–249 (1968)

    Article  Google Scholar 

  11. L. Morishima, K. Endo, T. Yonezawa, Chem. Phys. Lett. 9, 143–146 (1971)

    Article  ADS  Google Scholar 

  12. I. Morishima, K. Endo, T. Yonezawa, J. Am. Chem. Soc. 93, 2048–2050 (1971)

    Article  Google Scholar 

  13. I. Morishima, K. Endo, T. Yonezawa, J. Chem. Phys. 58, 3146–3154 (1973)

    Article  ADS  Google Scholar 

  14. A.S. Kabankin, G.M. Zhidomirov, A.L. Buchachenko, J. Magn. Reson. 9, 199–204 (1973)

    ADS  Google Scholar 

  15. I. Morishima, K. Ishihara, K. Tomishima, T. Inubushi, T. Yonezawa, J. Am. Chem. Soc. 97, 2749–2756 (1975)

    Article  Google Scholar 

  16. E. Dally, W. Müller-Warmuth, Ber. Bunsenges. Phys. Chem. 81, 1133–1137 (1977)

    Article  Google Scholar 

  17. K. Endo, I. Morishima, T. Yonezawa, J. Chem. Phys. 67, 4760–4767 (1977)

    Article  ADS  Google Scholar 

  18. E. Dally, W. Müller-Warmuth, Ber. Bunsenges. Phys. Chem. 82, 792–798 (1978)

    Article  Google Scholar 

  19. U. Stark, W. Müller-Warmuth, Ber. Bunsenges. Phys. Chem. 94, 168–172 (1990)

    Article  Google Scholar 

  20. I.G. Shenderovich, Z. Kecki, I. Wawer, G.S. Denisov, Spectrosc. Lett. 30, 1515–1523 (1997)

    Article  ADS  Google Scholar 

  21. A. Nalepa, K. Möbius, W. Lubitz, A. Savitsky, J. Magn. Reson. 242, 203–213 (2014)

    Article  ADS  Google Scholar 

  22. L.N. Ikryannikova, L.Y. Ustynyuk, A.N. Tikhonov, J. Phys. Chem. A 108, 4759–4768 (2004)

    Article  Google Scholar 

  23. L.N. Ikryannikova, L.Y. Ustynyuk, A.N. Tikhonov, Magn. Reson. Chem. 48, 337–349 (2010)

    Google Scholar 

  24. S. Sinnecker, M. Flores, W. Lubitz, Phys. Chem. Chem. Phys. 8, 5659–5670 (2006)

    Article  Google Scholar 

  25. S. Sinnecker, E. Reijerse, F. Neese, W. Lubitz, J. Am. Chem. Soc. 126, 3280–3290 (2004)

    Article  Google Scholar 

  26. K. Möbius, A. Savitsky, High-Field EPR Spectroscopy on Proteins and their Model Systems: Characterization of Transient Paramagnetic States (Royal Society of Chemistry, London, 2009)

    Google Scholar 

  27. K. Möbius, A. Savitsky, A. Schnegg, M. Plato, M. Fuchs, Phys. Chem. Chem. Phys. 7, 19–42 (2005)

    Article  Google Scholar 

  28. E. Reijerse, P.P. Schmidt, G. Klihm, W. Lubitz, Appl. Magn. Reson. 31, 611–626 (2007)

    Article  Google Scholar 

  29. A. Stesmans, G. Van Gorp, Phys. Lett. A 139, 95–98 (1989)

    Article  ADS  Google Scholar 

  30. O. Burghaus, M. Rohrer, T. Gotzinger, M. Plato, K. Möbius, Meas. Sci. Technol. 3, 765–774 (1992)

    Article  ADS  Google Scholar 

  31. M. Pavone, A. Sillanpää, P. Cimino, O. Crescenzi, V. Barone, J. Phys. Chem. B 110, 16189–16192 (2006)

    Article  Google Scholar 

  32. B. Dzikovski, D. Tipikin, J. Freed, J. Phys. Chem. B 116, 6694–6706 (2012)

    Article  Google Scholar 

  33. T.I. Smirnova, T.G. Chadwick, M.A. Voinov, O. Poluektov, J. van Tol, A. Ozarowski, G. Schaaf, M.M. Ryan, V.A. Bankaitis, Biophys. J. 92, 3686–3695 (2007)

    Article  ADS  Google Scholar 

  34. I.J. Brass, A.T. Bullock, J. Chem. Soc. Faraday Trans. I 74, 1556–1561 (1978)

    Article  Google Scholar 

  35. A.T. Bullock, C.B. Howard, J. Chem. Soc. Faraday Trans. I 77, 137–140 (1981)

    Article  Google Scholar 

  36. T.J. Bruno, P.D.N. Svoronos (eds.), CRC Handbook of Basic Tables for Chemical Analysis, 3rd edn. (CRC Press, Boca Raton, 2010)

    Google Scholar 

  37. D. Marsh, J. Phys. Chem. A 119, 919–921 (2015)

    Article  Google Scholar 

  38. R. Owenius, M. Engstrom, M. Lindgren, M. Huber, J. Phys. Chem. A 105, 10967–10977 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Yuri Grishin (Institute of Chemical Kinetics and Combustion, Novosibirsk, Russia) for enduring technical support and Herbert Zimmermann (Max-Planck Institute for Medical Research, Heidelberg) for providing the deuterated nitroxide radical. We thank Gudrun Klihm (Max Planck Institute for Chemical Energy Conversion, Mülheim) for technical assistance with the 244 GHz EPR spectrometer. This work was supported by the Cluster of Excellence RESOLV (EXC 1069) funded by the Deutsche Forschungsgemeinschaft and the Max-Planck-Gesellschaft. K.M. and M.P. acknowledge sustaining support by the Freie Universität Berlin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Savitsky.

Additional information

Dedicated to Jack H. Freed (Cornell University, N. Y., USA) on the occasion of his 80th birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nalepa, A., Möbius, K., Plato, M. et al. Nitroxide Spin Labels—Magnetic Parameters and Hydrogen-Bond Formation: A High-Field EPR and EDNMR Study. Appl Magn Reson 50, 1–16 (2019). https://doi.org/10.1007/s00723-018-1073-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-018-1073-3

Navigation