Applied Magnetic Resonance

, Volume 50, Issue 1–3, pp 199–209 | Cite as

Complexes Based on Calix[4]arene Sulfonic Acid with Acetic Acid and Its Derivatives: NMR Analysis

  • A. V. ChernyakEmail author
  • N. A. Slesarenko
  • V. I. Volkov
Original Paper


Calix[4]arene sulfonic acid complexes with acetic acid CH3COOH and its derivatives CCl3COOH, CF3COOH were studied by nuclear magnetic resonance (NMR). The formation of guest–host type complexes was shown by magic angle spinning (MAS) NMR and high-resolution NMR techniques. Increase in calixarene molecule conformational flexibility with moisture content rising was observed by 13C MAS NMR. Consequently, CCl3COOH, CF3COOH molecules vacate calixarene cavity at relative humidity RH > 33%. While the complex with CH3COOH remains stable up to RH = 64%. The self-diffusion processes were investigated by 1H pulsed field gradient technique. Spin-echo attenuation curves show non-exponential shape indicating the occurrence of several phases with a different translational mobility. The existence CCl3COOH, CF3COOH acid molecules inside the calixarene cavity leads to average self-diffusion coefficient D s aver reduction compared with pure calix[4]arene sulfonic acid. The values of D s aver for the CH3COOH complex are close to average self-diffusion coefficient of calix[4]arene sulfonic acid. From D s aver proton conductivities σcalc on the basis of the Nernst–Einstein equation were calculated. Calculated σcalc and experimental σexp conductivities are agreed well in the RH range from 33% to 75%. At low water content (RH = 10%) σexp is about one order of magnitude less compare with σcalc in calixarene and its complexes with CH3COOH and CCl3COOH. It may be explained by low conductivity boundary formation at these conditions between grains in process of target sample preparation for conductivity measurement.



The work was supported by Russian Foundation for Basic Research, project no. 18-08-00423 A.


  1. 1.
    F. Angela, D. de Namor, W. Aparicio-Aragon, N. Nwogu, A. El Gamouz, O.E. Piro, E.E. Castellano, J. Phys. Chem. B 115(21), 6922 (2011)CrossRefGoogle Scholar
  2. 2.
    G.U. Akkuş, E. Ala, S.E. Korcan, J. Supramol. Chem. 27, 522 (2015)CrossRefGoogle Scholar
  3. 3.
    S. Patra, D. Maity, R. Gunupuru, P. Agnihotri, P. Paul, J. Chem. Sci. 124(6), 1287 (2012)CrossRefGoogle Scholar
  4. 4.
    M. Raynal, P. Ballester, A. Vidal-Ferran, P.W.N.M. Van Leeuwen, Chem. Soc. Rev. 43, 1734 (2014)CrossRefGoogle Scholar
  5. 5.
    L. Baldini, R. Cacciapaglia, A. Casnati, L. Mandolini, R. Salvio, F. Sansone, R. Ungaro, J. Org. Chem. 77, 3381 (2012)CrossRefGoogle Scholar
  6. 6.
    D.L. Da Silva, S.A. Fernandes, A.A. Sabino, A. de Fatima, Tetrahedron Lett. 52, 6328 (2011)CrossRefGoogle Scholar
  7. 7.
    S. Shinkai, K. Araki, T. Matsuda, N. Nishiyama, H. Ikeda, I. Takasu, M. Iwamoto, J. Am. Chem. Soc. 112, 9053 (1990)CrossRefGoogle Scholar
  8. 8.
    T.E. Clark, M. Makha, A.N. Sobolev, H. Rohrs, J.L. Atwood, C.L. Raston, Chem. Eur. J. 14, 3931 (2008)CrossRefGoogle Scholar
  9. 9.
    A.D. Martin, C.L. Raston, Chem. Commun. 4, 9764 (2011)CrossRefGoogle Scholar
  10. 10.
    T.E. Clark, M. Makha, A.N. Sobolev, D. Su, H. Rohrs, M.L. Gross, C.L. Raston, Cryst. Growth Des. 9(8), 3575 (2009)CrossRefGoogle Scholar
  11. 11.
    J.L. Atwood, F. Hamada, K.D. Robinson, G.W. Orr, R.L. Vincent, Nature 349, 683 (1991)ADSCrossRefGoogle Scholar
  12. 12.
    W. Coleman, S.G. Bott, S.D. Morley, C.M. Means, K.D. Robinson, H. Zhang, J.L. Atwood, Angew. Chem. Int. Ed. Engl. 10, 1361 (1988)CrossRefGoogle Scholar
  13. 13.
    A.V. Pisareva, R.V. Pisarev, A.I. Karelin, L.V. Shmygleva, I.S. Antipin, A.I. Konovalov, S.E. Solovieva, Y.A. Dobrovolsky, S.M. Aldoshin, Russ. Chem. Bull. 61, 1892 (2012)CrossRefGoogle Scholar
  14. 14.
    L.V. Shmygleva, A.V. Pisareva, R.V. Pisarev, A.E. Ukshe, Y.A. Dobrovol’skii, Russ. J. Electrochem. 49, 801 (2013)CrossRefGoogle Scholar
  15. 15.
    L.V. Shmygleva, E.A. Sanginov, R.R. Kayumov, A.E. Ukshe, Y.A. Dobrovol’skii, Russ. J. Electrochem. 51, 468 (2015)CrossRefGoogle Scholar
  16. 16.
    L. Shmygleva, E. Sanginov, N. Slesarenko, A. Chernyak, A. Karelin, Yu. Dobrovolsky, Ionics 23, 1793 (2017)CrossRefGoogle Scholar
  17. 17.
    L. Shmygleva, N. Slesarenko, A. Chernyak, E. Sanginov, A. Karelin, A. Pisareva, R. Pisarev, Yu. Dobrovolsky, Int. J. Electrochem. Sci. 12, 4056 (2017)CrossRefGoogle Scholar
  18. 18.
    J.L. Atwood, L.J. Barbour, A. Jerga, Angew. Chem. Int. Ed. 43, 2948 (2004)CrossRefGoogle Scholar
  19. 19.
    L.V. Shmygleva, R.R. Kayumov, Yu.A. Dobrovolsky, Solid State Ion. 302, 202 (2017)CrossRefGoogle Scholar
  20. 20.
    A.I. Maklakov, V.D. Skirda, N.F. Fatkullin, Self-Diffusion in Solutions and Melts of Polymers (Kazan State University Press, Kazan, 1987)Google Scholar
  21. 21.
    Ki-Jeong Suh, Young-Shick Hong, V.D Skirda, V.I. Volkov, Chung-Yung J Lee, Cherl-Ho Lee, Biophys. Chem. 104, 121 (2003)CrossRefGoogle Scholar
  22. 22.
    V.I. Volkov, S.A. Korotchkova, H. Ohya, Q. Guo, J. Membr. Sci. 100, 273 (1995)CrossRefGoogle Scholar
  23. 23.
    I.A. Avilova, A.V. Smolina, A.I. Kotelnikov, R.A. Kotelnikova, V.V. Loskutov, V.I. Volkov, Appl. Magn. Reson. 47(3), 335 (2016)CrossRefGoogle Scholar
  24. 24.
    V.I. Volkov, S.L. Vasilyak, I.-W. Park, H.J. Kim, H. Ju, E.V. Volkov, S.H. Choh, Appl. Magn. Reson. 25, 43 (2003)CrossRefGoogle Scholar
  25. 25.
    V.I. Volkov, A.A. Marinin, Rus. Chem. Rev. 82(3), 248 (2013)CrossRefGoogle Scholar
  26. 26.
    C. Jaime, J. de Mendoza, P. Prados, P.M. Nieto, C. Shched, J. Org. Chem. 56, 3372 (1991)CrossRefGoogle Scholar
  27. 27.
    T.-M. Liang, K.K. Laali, Chem. Ber. 124, 2637 (1991)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • A. V. Chernyak
    • 1
    • 2
    Email author
  • N. A. Slesarenko
    • 1
  • V. I. Volkov
    • 1
  1. 1.Institute of Problems of Chemical Physics RASChernogolovkaRussian Federation
  2. 2.Science Center in Chernogolovka RASChernogolovkaRussian Federation

Personalised recommendations