Applied Magnetic Resonance

, Volume 50, Issue 1–3, pp 277–291 | Cite as

Portable Unilateral NMR Measuring System for Assessing the Aging Status of Silicon Rubber Insulators

  • Zheng XuEmail author
  • Lu Li
  • Pan GuoEmail author
  • Yongliang Ji
  • Jiaming Wu
  • Chuanhong He
Original Paper


Silicon rubber insulators (SRIs) are widely used in power transmission lines as line support and as insulation between the line and the tower. Given that the aging of SRIs threatens the safety and stability of power grids, the accurate assessment of the aging status of SRIs is crucial. In this study, a portable unilateral magnetic resonance (UMR) measuring system for the nondestructive testing of the aging status of SRIs was proposed. The proposed NMR measurement system includes a mini UMR sensor and a measurement circuit. Details of the mini UMR sensor structure and low-cost circuit design were discussed. The Carr–Purcell–Meiboom–Gill sequence was used to record the 1H transverse relaxation curves of SRI sheds. Inverse Laplace transformation was employed to obtain the T2 distribution, and two peaks in the T2 distribution curve were observed. The long T2 component was selected to quantify the aging degree because of its stability compared with the short T2 component. To eliminate the inaccuracy of measurement introduced by the different chemical structures of SRIs produced by different companies, the aging status of the SRIs was represented by the changes in T2 between the surface and internal materials of the SRI.



This work was supported by the State Key Development Program for Basic Research of China (973 Project, No. 2014CB541602), National Natural Science Foundation of China (Nos. 51677008 and 51707028), and Fundamental Research Funds of Central Universities (Nos. 106112015CDJXY150003 and 2018CDJDDQ0017).


  1. 1.
    J.S.T. Looms, Insulators for High Voltages (Peter Peregrinus, London, 1988), pp. 3–15Google Scholar
  2. 2.
    R. Hackam, IEEE Trans. Dielectr. Electr. Insul. 6(5), 557–585 (1999)CrossRefGoogle Scholar
  3. 3.
    M. Ehsani, H. Borsi, E. Gockenbach, G.R. Bakhshandeh, J. Morshedian, Adv. Polym. Technol. 24(1), 51–61 (2005)CrossRefGoogle Scholar
  4. 4.
    M.A.R.M. Fernando, S.M. Gubanski, IEEE Trans. Dielectr. Electr. Insul. 17(2), 326–333 (2010)CrossRefGoogle Scholar
  5. 5.
    G. Zhang, L. Zhao, R. Zhou, W. Shen, X. Liang, High Volt. Appar. 52(04), 1–15 (2016)Google Scholar
  6. 6.
    H. Homma, C.R. Lee, T. Kuroyagi, K. Izum, IEEE 6 Int. Conf. Prop. Appl. Dielectr. Mater. 121(2), 637–640 (2000)Google Scholar
  7. 7.
    W. Hu, Q. Jing, J. Peng, Insul. Surge Arresters 2, 5–10 (2013)Google Scholar
  8. 8.
    K. Zhou, T. Li, Z. Chen, D. Yang, W. Tao, International Conference on Condition Monitoring and Diagnosis (CMD) (Xi'an, China 2016).
  9. 9.
    X. Yao, Insul. Surge Arresters 3, 6–9 (2006)Google Scholar
  10. 10.
    STRl Guide 92/1, Hydrophobicity classification guide, 274 K. Kremer, RFP 1, 34–37 (2006)Google Scholar
  11. 11.
    A.H. El-Hag, S. Jayaram, E.A. Cherney, Annual Report Conference on Electrical Insulation and Dielectric Phenomena (Cat. No.01CH37225) (Kitchener, Ontario, Canada 2001).
  12. 12.
    I. Ahmadi-Joneidi, A. Majzoobi, A.A. Shayegani-akmal, H. Mohseni, J. Jadidian, IEEE Trans. Dielectr. Electr. Insul. 20(1), 212–220 (2013)CrossRefGoogle Scholar
  13. 13.
    N. Yoshimura, S. Kumagai, S. Nishimura, IEEE Trans. Dielectr. Electr. Insul. 6(5), 632–650 (1999)CrossRefGoogle Scholar
  14. 14.
    S.H. Kim, E.A. Cherney, R. Hackam, IEEE Trans. Dielectr. Electr. Insul. 1(1), 106–123 (1994)CrossRefGoogle Scholar
  15. 15.
    T.G. Gustavsson, S.M. Gubansky, H. Hillborg, S. Karlson, U.W. Gedde, IEEE Trans. Dielectr. Electr. Insul. 8(6), 1029–1039 (2001)CrossRefGoogle Scholar
  16. 16.
    B. Blümich, J. Perlo, F. Casanova, Prog. Nucl. Magn. Reson. Spectrosc. 52, 197 (2008)CrossRefGoogle Scholar
  17. 17.
    M. Krüger, A. Schwarz, B. Blümich, Magn. Reson. Imaging 25(2), 215–218 (2007)CrossRefGoogle Scholar
  18. 18.
    J.L. Paulsen, L.S. Bouchard, D. Graziani, B. Blümich, A. Pines, PNAS 105(52), 20601–20604 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    A. Adams, B. Blümich, Macromol. Symp. 327(1), 29–38 (2013)CrossRefGoogle Scholar
  20. 20.
    D. Oligschläger, S. Glöggler, J. Watzlaw, K. Brendel, D. Jaschtschuk, J. Colell, W. Zia, M. Vossel, U. Schnakenberg, B. Blümich, Appl. Magn. Reson. 46(2), 181–202 (2015)CrossRefGoogle Scholar
  21. 21.
    Z. Xu, S. Zhao, P. Guo, Appl. Magn. Reson. 44, 1405–1417 (2013)CrossRefGoogle Scholar
  22. 22.
    B. Blümich, P. Blümler, G. Eidmann, A. Guthausen, R. Haken, U. Schmitz, K. Saito, G. Zimmer, Magn. Reson. Imaging 16, 479–484 (1998)CrossRefGoogle Scholar
  23. 23.
    Y. Xia, Z. Xu, J. Huang, J. Lin, D. Yu, Prog. Electromagn. Res. M 42, 145–152 (2015)CrossRefGoogle Scholar
  24. 24.
    Z. Xu, X. Cui, K. Meng, Y. Xia, IEEE Sens. J. 16(5), 1168–1175 (2016)CrossRefGoogle Scholar
  25. 25.
    J. Perlo, F. Casanova, B. Blümich, J. Magn. Reson. 176, 64–70 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    F. Casanova, J. Perlo, B. Blümich, Single-Sided NMR (Springer, Berlin, 2011), pp. 203–209CrossRefGoogle Scholar
  27. 27.
    S.W. Provencher, Comput. Phys. Commun. 27, 213–227 (1982)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Power Transmission Equipment and System Security and New TechnologyChongqing UniversityChongqingChina
  2. 2.School of Physics and Electronic EngineeringChongqing Normal UniversityChongqingChina
  3. 3.Chongqing Electric Power Research InstituteState Grid Chongqing Electric Power CompanyChongqingChina

Personalised recommendations