Skip to main content
Log in

Multi-exponential Analysis of Water NMR Spin–Spin Relaxation in Porosity/Permeability-Controlled Sintered Glass

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Measuring time constants in multi-exponential decay phenomena is crucial in many areas of knowledge. However, besides the inherent difficulties to the mathematical structure of the problem analysis, noisy experimental data can make the task considerably difficult. One important example is nuclear magnetic resonance (NMR) logging data obtained from measurements of water and hydrocarbons in porous rocks from oil fields. To minimize the uncertainties, it is important to design experiments under controlled conditions. In this paper, we report a systematic study of high (500 MHz) and low (15 MHz)-field NMR \(T_2\) relaxation times performed on artificial sintered sand-glass samples saturated with water. Porosity and permeability were controlled by selecting the range of grains, and then applying a specific sintering temperature protocol to produce samples with different porous sizes, constant porosity, but varying permeability. The structure of porous was verified by microtomography and scanning electron microscopy techniques. Porosity and permeability were measured, respectively, by the free-gas expansion and steady-state methods. We analyze the NMR data using three different approaches: (1) Laplace inversion with optimized regularization based on measured noise level, (2) bi-exponential, and (3) q-exponential nonlinear least-squares. Upon a careful measurement protocol, we report that all methods yield essentially similar \(T_{2}\) distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Actually, two surface relaxativities are presented: one relating to longitudinal relaxation on the surface and another to transversal process.

  2. A porous sample with permeability equal to 1 Darcy allows a flow of \(1~{\text {cm}}^{3}/{\text {s}}\) of a fluid with viscosity of 1 mPa s under a pressure gradient of 1 atm/cm acting across an area of 1 cm\(^{2}\).

  3. The residue of regularized solutions as a function of the regularization coefficient, even for the nonnegatively constrained problem considered here, is usually non-decreasing.

References

  1. K.-J. Dunn, D.J. Bergman, G.A. LaTorraca, Nuclear Magnetic Resonance: Petrophysical and Logging Applications, vol. 32 (Elsevier, Amsterdam, 2002), p. 14

    Google Scholar 

  2. A.A. Behroozmand, K. Keating, E. Auken, Surv. Geophys. 36(1), 27–85 (2015)

    Article  ADS  Google Scholar 

  3. B. Cowan, Nuclear Magnetic Resonance and Relaxation (Cambridge University Press, Cambridge, 2005)

    Google Scholar 

  4. A.A. Istratov, O.F. Vyvenko, Rev. Sci. Instrum. 70(2), 1233–1257 (1999)

    Article  ADS  Google Scholar 

  5. K.P. Whittall, A.L. MacKay, J. Magn. Reson. 84(1), 134–152 (1989)

    ADS  Google Scholar 

  6. S. Davies, K.J. Packer, J. Appl. Phys. 67(6), 3163–3170 (1990)

    Article  ADS  Google Scholar 

  7. M. Bertero, C. De Mol, E.R. Pike, Inverse Probl. 1(4), 301 (1985)

    Article  ADS  Google Scholar 

  8. S. Ryu, in Proceedings of the SPWLA 50th Annual Logging Symposium of the Society of Petrophysicists and Well-Log Analysts (The Woodlands, Texas, USA, 21–24 June 2009) Document ID SPWLA-2009-30354

  9. E. Grunewald, R. Knight, Geophysics 74(6), E215–E221 (2009)

    Article  ADS  Google Scholar 

  10. H.C. Torrey, Phys. Rev. 104(3), 563 (1956)

    Article  ADS  Google Scholar 

  11. F. Bloch, Phys. Rev. 83(5), 1062 (1951)

    Article  ADS  Google Scholar 

  12. Stephen D. Senturia, J.D. Robinson, Soc. Petrol. Eng. J. 10(03), 237–244 (1970)

    Article  Google Scholar 

  13. H.C. Torrey, Phys. Rev. Lett. 3(9), 418 (1959)

    Article  ADS  Google Scholar 

  14. M.H. Cohen, K.S. Mendelson, J. Appl. Phys. 53(2), 1127–1135 (1982)

    Article  ADS  Google Scholar 

  15. S. Godefroy, J.-P. Korb, M. Fleury, R. G. Bryant, Phys. Rev. E 64(2), 021605 (2001)

    Article  ADS  Google Scholar 

  16. K.R. Brownstein, C.E. Tarr, J. Magn. Reson. 26(1), 17–24 (1977)

    ADS  Google Scholar 

  17. K.R. Brownstein, C.E. Tarr, Phys. Rev. A 19(6), 2446 (1979)

    Article  ADS  Google Scholar 

  18. M.D. Correia, J. Magn. Reson. 244, 12–17 (2014)

    Article  ADS  Google Scholar 

  19. W.E. Kenyon, SPE Form. Eval. 3(03), 622–636 (1988)

    Article  Google Scholar 

  20. M.M. Labani, J. Pet. Sci. Eng. 112, 7–16 (2013)

    Article  Google Scholar 

  21. S.F. Usman Ahmed, G.R.Coates Crary, J. Pet. Technol. 43(05), 578–587 (1991)

    Article  Google Scholar 

  22. C.P. Slichter, Principles of Magnetic Resonance, vol. 1 (Springer Science and Business Media, New York, 2013)

    Google Scholar 

  23. Mario Bertero, Christine De Mol, Edward Roy Pike, Inverse Probl. 4(3), 573 (1988)

    Article  ADS  Google Scholar 

  24. I. Foley, S.A. Farooqui, R.L. Kleinberg, J. Magn. Reson. Ser. A 123(1), 95–104 (1996)

    Article  ADS  Google Scholar 

  25. M.D. Hürlimann, J. Magn. Reson. 131(2), 232–240 (1998)

    Article  ADS  Google Scholar 

  26. T.R. Bryar, C.J. Daughney, R.J. Knight, J. Magn. Reson. 142(1), 74–85 (2000)

    Article  ADS  Google Scholar 

  27. L. R. Stingaciu, A. Pohlmeier, P. Blümler, L. Weihermüller, D. van Dusschoten, S. Stapf, H. Vereecken, Water Resour. Res. 45(8), 8412 (2009)

    Article  ADS  Google Scholar 

  28. S. Muncaci, I. Ardelean, Appl. Magn. Reson. 44(7), 837–848 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to technicians and researchers of CENPES/PETROBRAS laboratories for the microtomography images, porosity and permeability measurements. We also would like to thank E.H.C.P. Sinnecker and J. P. Sinnecker for the susceptibility measurements. This work was supported by CAPES, CNPQ, and PETROBRAS, Project 2015/00275-5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Oliveira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chencarek, B., Nascimento, M.S., Souza, A.M. et al. Multi-exponential Analysis of Water NMR Spin–Spin Relaxation in Porosity/Permeability-Controlled Sintered Glass. Appl Magn Reson 50, 211–225 (2019). https://doi.org/10.1007/s00723-018-1050-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-018-1050-x

Navigation