Advertisement

Applied Magnetic Resonance

, Volume 50, Issue 1–3, pp 211–225 | Cite as

Multi-exponential Analysis of Water NMR Spin–Spin Relaxation in Porosity/Permeability-Controlled Sintered Glass

  • B. Chencarek
  • M. S. Nascimento
  • A. M. Souza
  • R. S. Sarthour
  • B. C. C. Santos
  • M. D. Correia
  • I. S. OliveiraEmail author
Original Paper
  • 158 Downloads

Abstract

Measuring time constants in multi-exponential decay phenomena is crucial in many areas of knowledge. However, besides the inherent difficulties to the mathematical structure of the problem analysis, noisy experimental data can make the task considerably difficult. One important example is nuclear magnetic resonance (NMR) logging data obtained from measurements of water and hydrocarbons in porous rocks from oil fields. To minimize the uncertainties, it is important to design experiments under controlled conditions. In this paper, we report a systematic study of high (500 MHz) and low (15 MHz)-field NMR \(T_2\) relaxation times performed on artificial sintered sand-glass samples saturated with water. Porosity and permeability were controlled by selecting the range of grains, and then applying a specific sintering temperature protocol to produce samples with different porous sizes, constant porosity, but varying permeability. The structure of porous was verified by microtomography and scanning electron microscopy techniques. Porosity and permeability were measured, respectively, by the free-gas expansion and steady-state methods. We analyze the NMR data using three different approaches: (1) Laplace inversion with optimized regularization based on measured noise level, (2) bi-exponential, and (3) q-exponential nonlinear least-squares. Upon a careful measurement protocol, we report that all methods yield essentially similar \(T_{2}\) distributions.

Notes

Acknowledgements

We are grateful to technicians and researchers of CENPES/PETROBRAS laboratories for the microtomography images, porosity and permeability measurements. We also would like to thank E.H.C.P. Sinnecker and J. P. Sinnecker for the susceptibility measurements. This work was supported by CAPES, CNPQ, and PETROBRAS, Project 2015/00275-5.

References

  1. 1.
    K.-J. Dunn, D.J. Bergman, G.A. LaTorraca, Nuclear Magnetic Resonance: Petrophysical and Logging Applications, vol. 32 (Elsevier, Amsterdam, 2002), p. 14Google Scholar
  2. 2.
    A.A. Behroozmand, K. Keating, E. Auken, Surv. Geophys. 36(1), 27–85 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    B. Cowan, Nuclear Magnetic Resonance and Relaxation (Cambridge University Press, Cambridge, 2005)Google Scholar
  4. 4.
    A.A. Istratov, O.F. Vyvenko, Rev. Sci. Instrum. 70(2), 1233–1257 (1999)ADSCrossRefGoogle Scholar
  5. 5.
    K.P. Whittall, A.L. MacKay, J. Magn. Reson. 84(1), 134–152 (1989)ADSGoogle Scholar
  6. 6.
    S. Davies, K.J. Packer, J. Appl. Phys. 67(6), 3163–3170 (1990)ADSCrossRefGoogle Scholar
  7. 7.
    M. Bertero, C. De Mol, E.R. Pike, Inverse Probl. 1(4), 301 (1985)ADSCrossRefGoogle Scholar
  8. 8.
    S. Ryu, in Proceedings of the SPWLA 50th Annual Logging Symposium of the Society of Petrophysicists and Well-Log Analysts (The Woodlands, Texas, USA, 21–24 June 2009) Document ID SPWLA-2009-30354Google Scholar
  9. 9.
    E. Grunewald, R. Knight, Geophysics 74(6), E215–E221 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    H.C. Torrey, Phys. Rev. 104(3), 563 (1956)ADSCrossRefGoogle Scholar
  11. 11.
    F. Bloch, Phys. Rev. 83(5), 1062 (1951)ADSCrossRefGoogle Scholar
  12. 12.
    Stephen D. Senturia, J.D. Robinson, Soc. Petrol. Eng. J. 10(03), 237–244 (1970)CrossRefGoogle Scholar
  13. 13.
    H.C. Torrey, Phys. Rev. Lett. 3(9), 418 (1959)ADSCrossRefGoogle Scholar
  14. 14.
    M.H. Cohen, K.S. Mendelson, J. Appl. Phys. 53(2), 1127–1135 (1982)ADSCrossRefGoogle Scholar
  15. 15.
    S. Godefroy, J.-P. Korb, M. Fleury, R. G. Bryant, Phys. Rev. E 64(2), 021605 (2001)ADSCrossRefGoogle Scholar
  16. 16.
    K.R. Brownstein, C.E. Tarr, J. Magn. Reson. 26(1), 17–24 (1977)ADSGoogle Scholar
  17. 17.
    K.R. Brownstein, C.E. Tarr, Phys. Rev. A 19(6), 2446 (1979)ADSCrossRefGoogle Scholar
  18. 18.
    M.D. Correia, J. Magn. Reson. 244, 12–17 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    W.E. Kenyon, SPE Form. Eval. 3(03), 622–636 (1988)CrossRefGoogle Scholar
  20. 20.
    M.M. Labani, J. Pet. Sci. Eng. 112, 7–16 (2013)CrossRefGoogle Scholar
  21. 21.
    S.F. Usman Ahmed, G.R.Coates Crary, J. Pet. Technol. 43(05), 578–587 (1991)CrossRefGoogle Scholar
  22. 22.
    C.P. Slichter, Principles of Magnetic Resonance, vol. 1 (Springer Science and Business Media, New York, 2013)Google Scholar
  23. 23.
    Mario Bertero, Christine De Mol, Edward Roy Pike, Inverse Probl. 4(3), 573 (1988)ADSCrossRefGoogle Scholar
  24. 24.
    I. Foley, S.A. Farooqui, R.L. Kleinberg, J. Magn. Reson. Ser. A 123(1), 95–104 (1996)ADSCrossRefGoogle Scholar
  25. 25.
    M.D. Hürlimann, J. Magn. Reson. 131(2), 232–240 (1998)ADSCrossRefGoogle Scholar
  26. 26.
    T.R. Bryar, C.J. Daughney, R.J. Knight, J. Magn. Reson. 142(1), 74–85 (2000)ADSCrossRefGoogle Scholar
  27. 27.
    L. R. Stingaciu, A. Pohlmeier, P. Blümler, L. Weihermüller, D. van Dusschoten, S. Stapf, H. Vereecken, Water Resour. Res. 45(8), 8412 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    S. Muncaci, I. Ardelean, Appl. Magn. Reson. 44(7), 837–848 (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • B. Chencarek
    • 1
  • M. S. Nascimento
    • 1
    • 2
  • A. M. Souza
    • 1
  • R. S. Sarthour
    • 1
  • B. C. C. Santos
    • 2
  • M. D. Correia
    • 2
  • I. S. Oliveira
    • 1
    Email author
  1. 1.Centro Brasileiro de Pesquisas FísicasRio de JaneiroBrazil
  2. 2.Centro de Pesquisas e Desenvolvimento Leopoldo Américo Miguez de Mello-CENPES/PETROBRASRio de JaneiroBrazil

Personalised recommendations