Skip to main content
Log in

Improving Multi-contrast Imaging with Reference Guided Location and Orientation Priors on Edges

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The multi-contrast magnetic resonance imaging can provide rich clinical and diagnostic information, but it requires long scanning time in data acquisition. In this paper, we propose a reference guided joint reconstruction method to address this problem. The proposed method both incorporates the location and orientation priors on edge regions from a high-resolution reference image into joint sparsity constraints, enabling to effectively reconstruct high-quality multi-contrast images from the under-sampled k-space data. The alternating direction method of multipliers is used to solve the joint sparsity-promoting optimization problem. In addition, a generalized frame with multiple reference images is developed to further improve the reconstruction performance, and the proposed method in combination with parallel imaging is also demonstrated to analyze the feasibility in the practical multi-channel acquisition of multi-contrast images. The experiments have demonstrated the superiority of our proposed method compared to those existing reconstruction technologies in multi-contrast imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. E.J. Candès, J. Romberg, T. Tao, IEEE Trans. Inf. Theory 52, 489–509 (2006)

    Article  Google Scholar 

  2. R. Chartrand, IEEE Signal Process. Lett. 14, 707–710 (2007)

    Article  ADS  Google Scholar 

  3. D.L. Donoho, IEEE Trans. Inf. Theory 52, 1289–1306 (2006)

    Article  Google Scholar 

  4. M. Lustig, D. Donoho, J.M. Pauly, Magn. Reson. Med. 58, 1182–1195 (2007)

    Article  Google Scholar 

  5. U. Gamper, P. Boesiger, S. Kozerke, Magn. Reson. Med. 59, 365–373 (2008)

    Article  Google Scholar 

  6. D. Liang, B. Liu, J. Wang, L. Ying, Magn. Reson. Med. 62, 1574–1584 (2009)

    Article  Google Scholar 

  7. R.G. Baraniuk, V. Cevher, M.F. Duarte, C. Hegde, IEEE Tran. Inf. Theory 56, 1982–2001 (2010)

    Article  Google Scholar 

  8. D. Liang, E.V. DiBella, R.-R. Chen, L. Ying, Magn. Reson. Med. 68, 41–53 (2012)

    Article  Google Scholar 

  9. Y. Wu, Y.-J. Zhu, Q.-Y. Tang, C. Zou, W. Liu, R.-B. Dai, X. Liu, E.X. Wu, L. Ying, D. Liang, Magn. Reson. Med. 71, 763–772 (2014)

    Article  Google Scholar 

  10. A. Majumdar, R.K. Ward, Magn. Reson. Imaging 29, 899–906 (2011)

    Article  Google Scholar 

  11. J. Huang, C. Chen, L. Axel, Magn. Reson. Imaging 32, 1344–1352 (2014)

    Article  Google Scholar 

  12. A. Beck, M. Teboulle, IEEE Tran. Image Process. 18, 2419–2434 (2009)

    Article  ADS  Google Scholar 

  13. A. Beck, M. Teboulle, SIAM J. Imaging Sci. 2, 183–202 (2009)

    Article  MathSciNet  Google Scholar 

  14. I. Chatnuntawech, B. Bilgic, A. Martin, K. Setsompop, E. Adalsteinsson, in Proceedings of the IEEE International Symposium on Biomedical Imaging (Brooklyn, NY, USA, 16–19 April, 2015), pp. 335–338

  15. L. Weizman, Y.C. Eldar, D. Ben Bashat, Med. Phys. 43, 5357–5369 (2015)

    Article  Google Scholar 

  16. X. Peng, Q. Zhu, S. Wang, D. Liang, in Proceedings of the IEEE International Conference of the Engineering in Medicine and Biology Society (Milano, Italy, 25–29 August, 2015), pp. 7498–7501

  17. X. Peng, S. Wang, Q. Zhu, D. Liang, in Proceedings of the 24th Annual Meeting of the International Society for Magn. Reson. Med., (Singapore, 7–13 May, 2016), p. 4232

  18. M.J. Ehrhardt, M.M. Betcke, SIAM J. Imaging Sci. 9, 1084–1106 (2016)

    Article  MathSciNet  Google Scholar 

  19. M.J. Ehrhardt, S.R. Arridge, IEEE Trans. Image Process. 23, 9–18 (2013)

    Article  ADS  Google Scholar 

  20. J. Huang, T. Zhang, Ann. Stat. 38, 1978–2004 (2010)

    Article  Google Scholar 

  21. J. Canny, IEEE Trans. Pattern Anal. Mach. Intell. 8, 679–698 (1986)

    Article  Google Scholar 

  22. M.F. Duarte, S. Sarvotham, D. Baron, M.B. Wakin, R.G. Baraniuk, in Proceedings of the 39th Asilomar Conference on Signals, Systems and Computers (Pacific Grove, CA, USA, 30 October–2 November, 2005), pp. 1537–1541

  23. E.J. Candes, M.B. Wakin, S.P. Boyd, J. Fourier Anal. Appl. 14, 877–905 (2008)

    Article  MathSciNet  Google Scholar 

  24. W. Guo, W. Yin, SIAM J. Imaging Sci. 5, 809–834 (2012)

    Article  MathSciNet  Google Scholar 

  25. K.P. Pruessmann, M. Weiger, M.B. Scheidegger, P. Boesiger, Magn. Reson. Med. 42, 952–962 (1999)

    Article  Google Scholar 

  26. Y. Xu, W. Yin, Z. Wen, Y. Zhang, Front. Math. China 7, 365–384 (2012)

    Article  MathSciNet  Google Scholar 

  27. J. Yang, Y. Zhang, SIAM J. Sci. Comput. 33, 250–278 (2011)

    Article  MathSciNet  Google Scholar 

  28. J.T. Oden, R. Glowinski, P.L. Tallec, Math. Comput. 58, 197 (1989)

    Google Scholar 

  29. W. Deng, W. Yin, Y. Zhang, Technical Report, Rice University (2011)

  30. T. Rohlfing, N.M. Zahr, E.V. Sullivan, A. Pfefferbaum, Human Brain Mapp. 31, 798–819 (2010)

    Article  Google Scholar 

  31. C.A. Cocosco, V. Kollokian, K.S. Kwan, A.C. Evans, Neuroimage 5, S425 (1997)

    Google Scholar 

  32. Y. Yechieli, M. Magaritz, M. Shatkay, D. Ronen, I. Carmi, IEEE Trans. Med. Imaging 31, 1250–1262 (2012)

    Article  Google Scholar 

  33. R. Chartrand, W. Yin, in Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (Las Vegas, NV, USA, 31 March–4 April, 2008), pp. 3869–3872

  34. J.P.W. Pluim, J. Maintz, M.A. Viergever, IEEE Trans. Med. Imaging 19, 809–814 (2002)

    Article  Google Scholar 

  35. A. Gooya, K.M. Pohl, M. Bilello, G. Biros, C. Davatzikos, in Proceedings of the 14th International Conference on Medical Image Computing and Computer-assisted Intervention (Toronto, Canada, 18–22 September, 2011), pp. 532–540

  36. A. Sotiras, Y. Ou, N. Paragios, C. Davatzikos, Handbook of Biomedical Imaging (Springer, NewYork, 2015) pp. 331–359

  37. N. Debroux, S. Ozer, C.L. Guyader, J. Math. Imaging Vision 59, 432–455 (2017)

    Article  MathSciNet  Google Scholar 

  38. B.S. He, H. Yang, S.L. Wang, J. Optim. Theory Appl. 106, 337–356 (2000)

    Article  MathSciNet  Google Scholar 

  39. S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, Found. Trends Mach. Learn. 3, 1–122 (2010)

    Article  Google Scholar 

  40. K. Bahrami, F. Shi, X. Zong, S.H. Won, H. An, D. Shen, IEEE Trans. Med. Imaging 35, 2085–2097 (2016)

    Article  Google Scholar 

  41. A. Majumdar, R.K. Ward, T. Aboulnasr, IEEE Trans. Med. Imaging 31, 2253–2266 (2012)

    Article  Google Scholar 

  42. S.G. Lingala, M. Jacob, IEEE Trans. Med. Imaging 32, 1132–1145 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the authors that mentioned in paper for sharing their Matlab codes online. We also thank Xi Peng and Shanshan Wang for some helpful discussions. The authors would like to express their sincere gratitude to the reviewers for their positive comments and valuable advice on this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Q., Wang, W. Improving Multi-contrast Imaging with Reference Guided Location and Orientation Priors on Edges. Appl Magn Reson 50, 137–158 (2019). https://doi.org/10.1007/s00723-018-1043-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-018-1043-9

Navigation