Skip to main content
Log in

A Hybrid Method for NMR Data Compression Based on Window Averaging (WA) and Principal Component Analysis (PCA)

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Prior to the advent of nuclear magnetic resonance (NMR) data inversion, a common approach for handling the large amount of raw echo data collected by NMR logging was data compression for improving the inversion speed. A fast compression method with a high compression ratio is required for processing NMR logging data. In this paper, we proposed a hybrid method to compress NMR data based on the window averaging (WA) and principal component analysis (PCA) methods. The proposed method was compared with the WA method and the PCA method in terms of the compression times of simulated one-, two-, and three-dimensional NMR data, the inversion times of compressed echo data, and the accuracy of NMR maps created with and without compression. We processed NMR log data and compared the inversion results with different compression methods. The results indicated that the proposed method with a high compression speed and a high compression ratio can be used for NMR data compression, and its accuracy depended on the precompressed echo number, and it is obvious that the method have practical applications for NMR data processing, especially for multi-dimensional NMR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. G.R. Coates, L.Z. Xiao, M.G. Prammer, in NMR Logging Principles and Applications (Haliburton Energy Services Sea Gulf Press, Houston, 1999), pp. 1–28

    Google Scholar 

  2. K.J. Dunn, D.J. Bergman, G.A. LaTorraca, in Nuclear Magnetic Resonance: Petrophysical and Logging Applications (Pergamon, New York, 2002), pp. 1–10

    Google Scholar 

  3. M.D. Hürlimann, L. Venkataramanan, C. Flaum, J. Chem. Phys. 117, 10223–10232 (2002)

    Article  ADS  Google Scholar 

  4. N. Heaton, H.N. Bachman, C.C. Minh, E. Decoster, J. Lavigne, J. White, R. Carmona, Petrophysics 49, 172–186 (2008)

    Google Scholar 

  5. J. Guo, R. Xie, Y. Zou, Y. Ding, J. Geophys. Eng. 13, 285–294 (2016)

    Article  Google Scholar 

  6. J.F. Guo, R.H. Xie, Y.L. Zou, Chin. J. Geophys. 59, 2703–2712 (2016). (in Chinese)

    Google Scholar 

  7. J. Guo, R. Xie, J. Nat. Gas Sci. Eng. 37, 502–511 (2017)

    Article  Google Scholar 

  8. M.G. Prammer, SPE Annual Technical Conference and Exhibition (Society of Petroleum Engineers, New Orleans, 1994), pp. 55–64. https://doi.org/10.2118/28368-ms

  9. A. Sezginer, Determining bound and unbound fluid volumes using nuclear magnetic resonance pulse sequences: U.S. Patent 5,363,041[P] (1994)

  10. R. Sigal, Petrophysics 43, 38–46 (2002)

    Google Scholar 

  11. N.J. Heaton, C.C. Minh, J. Kovats, U. Guru, SPE Annual Technical Conference and Exhibition (Society of Petroleum Engineers, Houston, 2004), pp. 1–11. https://doi.org/10.2118/90564-ms

  12. L. Zhu, C. Zhang, Y. Wei, X. Zhou, Y. Huang, C. Zhang, Interpretation 5, T341–T350 (2017)

    Article  Google Scholar 

  13. R. Freedman, Method and apparatus for compressing data produced from a well tool in a wellbore prior to transmitting the compressed data uphole to a surface apparatus: U.S. Patent 5,381,092[P] (1995)

  14. K.J. Dunn, G.A. LaTorraca, J. Magn. Reson. 140, 153–161 (1999)

    Article  ADS  Google Scholar 

  15. Y.Q. Song, L. Venkataramanan, M.D. Hürlimann, M. Flaum, P. Frulla, C. Straley, J. Magn. Reson. 154, 261–268 (2002)

    Article  ADS  Google Scholar 

  16. L. Venkataramanan, Y.Q. Song, M.D. Hürlimann, IEEE Trans. Signal Process. 50, 1017–1026 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  17. J. Mitchell, T.C. Chandrasekera, L.F. Gladden, Prog. Nucl. Magn. Reson. Spectrosc. 62, 34–50 (2012)

    Article  Google Scholar 

  18. Y. Zou, R. Xie, Comput. Geosci. 19, 389–401 (2015)

    Article  Google Scholar 

  19. R. Bai, A. Cloninger, W. Czaja, P.J. Basser, J. Magn. Reson. 255, 88–99 (2015)

    Article  ADS  Google Scholar 

  20. Y. Ding, R. Xie, Y. Zou, J. Guo, Appl. Magn. Reson. 47, 297–307 (2016)

    Article  Google Scholar 

  21. J.P. Butler, J.A. Reeds, S.V. Dawson, SIAM J. Numer. Anal. 18, 381–397 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  22. É. Chouzenoux, S. Moussaoui, J. Idier, F. Mariette, IEEE Trans. Signal Process. 58, 6040–6051 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  23. Y. Zou, R. Xie, Y. Ding, A. Arad, Geophysics 81, D1–D8 (2016)

    Article  Google Scholar 

  24. J. Guo, R. Xie, Y. Zou, G. Jin, L. Gao, C. Xu, Geophysics (2018). https://doi.org/10.1190/geo2017-0394.1

    Article  Google Scholar 

  25. M. Prange, Y.Q. Song, J. Magn. Reson. 196, 54–60 (2009)

    Article  ADS  Google Scholar 

  26. R. Salazar-Tio, B. Sun, Petrophysics 51, 208–218 (2010)

    Google Scholar 

  27. G.H. Golub, M. Heath, G. Wahba, Technometrics 21, 215–223 (1977)

    Article  Google Scholar 

  28. Y.L. Zou, R.H. Xie, A. Arad, Petrol. Sci. 38, 237–246 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This project was funded by the National Natural Science Foundation of China (Grant No. 41674126), and China National Key Scientific and Technological Project for Oil & Gas and Coalbed Methane Development (Grant No. 2016ZX05031-001). The authors would like to thank the editors and reviewers for their constructive comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranhong Xie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Xie, R. & Liu, H. A Hybrid Method for NMR Data Compression Based on Window Averaging (WA) and Principal Component Analysis (PCA). Appl Magn Reson 50, 73–101 (2019). https://doi.org/10.1007/s00723-018-1037-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-018-1037-7

Navigation