Applied Magnetic Resonance

, Volume 50, Issue 1–3, pp 63–72 | Cite as

NMR Investigations of the Catalyst–Monomer Interaction and Stereochemistry of the Product in Catalytic Polymerization of 2-Hydroxyethyl Methacrylate

  • Svetlana KholuiskayaEmail author
  • Lidiya Kurkovskaya
Original Paper


Nuclear magnetic resonance (NMR) spectroscopy has been used to study the structure of the product and possible intermediates in the polymerization of 2-hydroxyethyl methacrylate catalyzed by the oxovanadium (IV) complex. The assumption of the coordination nature of the polymerization is confirmed by noncovalent interactions between monomer and the catalyst, which has been examined by NMR on 1H, 13C, and 17O nuclei. The catalyst affects remarkably the stereospecificity of the reaction. The resulting polymer with high molecular weight Mn ≈ 200,000 has a predominantly syndiotactic structure; the chain growth is satisfactorily described by the first-order Markov model with the statistical parameters Pr/m = 0.156 and Pm/r = 0.857.



This work was supported by the Federal Agency of Science and Education of the Russian Federation (Theme V. 45.11, 0082-2014-0009, № AAAA-A17-117040610309-0).


  1. 1.
    K.-H. Hsieh, T.-H. Young, in Polymeric Materials Encyclopedia, vol. 5, ed. by J.C. Salamon (CRC Press, Boca Raton, 1996), p. 3087Google Scholar
  2. 2.
    K.L. Beers, S. Boo, S.G. Gaynor, K. Matyjaszewski, Macromolecules 32, 5772 (1999)ADSCrossRefGoogle Scholar
  3. 3.
    J.K. Oh, K. Matyjaszewski, J. Polym. Sci. Part A Polym. Chem. 44, 3787 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    S.M. Paterson, D.H. Brown, T.V. Chirila, I. Keen, A.K. Whittaker, M.V. Baker, J. Polym. Sci. Part A Polym. Chem. 48, 4084 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    N.H. Nguyen, X. Leng, V. Percec, Polym. Chem. 4, 2760 (2013)CrossRefGoogle Scholar
  6. 6.
    S.N. Kholuiskaya, V.V. Minin, A.A. Gridnev, in Applied Chemistry and Chemical Engineering, ed. by A.K. Haghi, D. Balköse, O.V. Mukbaniani, A.G. Mercader (Apple Acad. Press Inc., Toronto, 2018), p. 299 (ISBN: 978-1-77188-515-7) Google Scholar
  7. 7.
    K. Hatada, T. Kitayama,  in NMR Spectroscopy of Polymers (Springer, Berlin, 2004), p. 228CrossRefGoogle Scholar
  8. 8.
    F.A. Bovey, in High Resolution NMR of Macromolecules (Academic Press, New York, 1972), p. 466Google Scholar
  9. 9.
    R. Chujo, K. Hatada, R. Kitamaru, T. Kitayama, H. Sato, Y. Tanaka, Polym. J. 19, 413 (1987)CrossRefGoogle Scholar
  10. 10.
    Y. Isobe, T. Nakano, Y. Okamoto, J. Polym. Sci. Part A Polym. Chem. 39, 1463 (2001)ADSCrossRefGoogle Scholar
  11. 11.
    J. Selbin, L.H. Holmes, J. Inorg. Nucl. Chem. 24, 1111 (1962)CrossRefGoogle Scholar
  12. 12.
    O.W. Webster, Adv. Polym. Sci. 167, 1 (2004)Google Scholar
  13. 13.
    S.E. Denmark, J. Fu, Chem. Rev. 103, 2763 (2003)CrossRefGoogle Scholar
  14. 14.
    I. Goni, M. Gurruchaga, M. Valero, G.M. Guzman, Polymer 33, 3089 (1992)CrossRefGoogle Scholar
  15. 15.
    Y. Miura, T. Shibata, K. Satoh, M. Komigaita, Y. Okamoto, J. Am. Chem. Soc. 128, 16026 (2006)CrossRefGoogle Scholar
  16. 16.
    T. Shibata, K. Satoh, M. Komigaita, Y. Okamoto, J. Polym. Sci. Part A Polym. Chem. 44, 3609 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    Y. Fuji, K. Watanabe, K.-Y. Baek, T. Ando, M. Kamigaito, M. Sawamoto, J. Polym. Sci. Part A Polym. Chem. 40, 2055 (2002)ADSCrossRefGoogle Scholar
  18. 18.
    J. San Roman, B. Levenfeld, Macromolecules 23, 3036 (1990)ADSCrossRefGoogle Scholar
  19. 19.
    Y. Inoue, A. Nishioka, R. Chujo, Polym. J. 2, 535 (1971)CrossRefGoogle Scholar
  20. 20.
    S. Hooda, A.K. Goyal, Indian J. Chem. 46 A, 899 (2007)Google Scholar
  21. 21.
    T.G. Fox, H.W. Schnecko, Polymer 3, 575 (1963)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.N. N. Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.N. M. Emanuel Institute of Biochemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations