Skip to main content
Log in

Flowing Liquids in NMR: Numerical CFD Simulation and Experimental Confirmation of Magnetization Buildup

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Process and reaction monitoring by nuclear magnetic resonance (NMR) spectroscopy has attracted considerable attention in the last years not only because of the new generation of low-field NMR spectrometers, but also because of an industrial need of more effectivity and process optimization via real-time monitoring of process and reaction details by diverse analytical tools. Most often, bypass solutions are realized in liquid state monitoring, which leads to questions of residence time distribution, mixing phenomena and accuracy of concentration determination. Exploring chemical engineering knowledge of fluid dynamics and combining it with NMR knowledge of magnetization buildup allow the calculation of magnetization in NMR measurements on flowing substances. This approach reveals the essential parameters to be considered when constructing flow cells and when processing data in NMR process monitoring. 3D computational fluid dynamics combined with Bloch equations allows detailed time and spatially resolved insights into the significant mechanisms of magnetization distribution and opens up new possibilities for experiment design in flow NMR. An experimental confirmation was provided by MRI experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.F. Haw, T.E. Glass, H.C. Dorn, Anal. Chem. 53, 2327–2332 (1981)

    Article  Google Scholar 

  2. J.F. Haw, T.E. Glass, H.C. Dorn, J. Magn. Reson. 49, 22–31 (1982)

    ADS  Google Scholar 

  3. H.C. Dorn, Anal. Chem. 56, A747–A758 (1984)

    Google Scholar 

  4. H.C. Dorn, in Encyclopedia of Nuclear Magnetic Resonance, ed. by D.M. Grant, R.K. Harris (Wiley, Chichester, 1996), pp. 2026–2037

    Google Scholar 

  5. T.M. Osan, J.M. Olle, M. Carpinella, L.M.C. Cerioni, D.J. Pusiol, M. Appel, J. Freeman, I. Espejo, J. Magn. Reson. 209, 116–122 (2011)

    Article  ADS  Google Scholar 

  6. G.K. Radda, P. Styles, K.R. Thulborn, J.C. Waterton, J. Magn. Reson. 42, 488–490 (1981)

    ADS  Google Scholar 

  7. A. Caprihan, E. Fukushima, Phys. Rep. 198, 195–235 (1990)

    Article  ADS  Google Scholar 

  8. E. Bayer, K. Albert, M. Nieder, E. Grom, J. Chromatogr. 186, 497–507 (1979)

    Article  Google Scholar 

  9. K. Albert, E. Bayer, Trends Anal. Chem. 7, 288–293 (1988)

    Article  Google Scholar 

  10. K. Albert, J. Chromatogr. A 703, 123–147 (1995)

    Article  Google Scholar 

  11. M. Maiwald, H.H. Fischer, Y.K. Kim, K. Albert, H. Hasse, J. Magn. Reson. 166, 135–146 (2004)

    Article  ADS  Google Scholar 

  12. M. Maiwald, H.H. Fischer, Y.K. Kim, H. Hasse, Anal. Bioanal. Chem. 375, 1111–1115 (2003)

    Article  Google Scholar 

  13. M. Maiwald, T. Grutzner, E. Strofer, H. Hasse, Anal. Bioanal. Chem. 385, 910–917 (2006)

    Article  Google Scholar 

  14. F. Dalitz, M. Cudaj, M. Maiwald, G. Guthausen, Prog. Nucl. Magn. Reson. Spectrosc. 60, 52–70 (2012)

    Article  Google Scholar 

  15. E. Danieli, J. Perlo, A.L.L. Duchateau, G.K.M. Verzijl, V.M. Litvinov, B. Blümich, F. Casanova, Chem. Phys. Chem. 15, 3060–3066 (2014)

    Article  Google Scholar 

  16. S.K. Küster, F. Casanova, E. Danieli, B. Blümich, Phys. Chem. Chem. Phys. 13, 13172–13176 (2011)

    Article  Google Scholar 

  17. A. Nordon, C.A. McGill, D. Littlejohn, Analyst 126, 260–272 (2001)

    Article  ADS  Google Scholar 

  18. M.A. Vargas, M. Cudaj, K. Hailu, K. Sachsenheimer, G. Guthausen, Macromolecules 43, 5561–5568 (2010)

    Article  ADS  Google Scholar 

  19. G. Guthausen, A. von Garnier, R. Reimert, Appl. Spectrosc. 63, 1121–1127 (2009)

    Article  ADS  Google Scholar 

  20. H. Herold, E.H. Hardy, M. Ranft, K.H. Wassmer, N. Nestle, Microporous Mesoporous Mater. 178, 74–78 (2013)

    Article  Google Scholar 

  21. H. Herold, E.H. Hardy, K.H. Wassmer, N. Nestle, Chem. Ing. Tech. 84, 93–99 (2012)

    Article  Google Scholar 

  22. O. Levenspiel, Chemical Reaction Engineering, 3rd edn. (Wiley, New York, 1999)

    Google Scholar 

  23. H.S. Fogler, Essentials of Chemical Reaction Engineering (Pearson Education, London, 2010)

    Google Scholar 

  24. K. Jurczuk, M. Kretowski, J.J. Bellanger, P.A. Eliat, H. Saint-Jalmes, J. Bezy-Wendling, Magn. Reson. Imaging 31, 1163–1173 (2013)

    Article  Google Scholar 

  25. R.L. Haner, Flow Tube for NMR Probe, Patent Application Number 628,228, Patent Number US 5867026 (Varian Associates Inc., 1999)

  26. R.L. Haner, W. Llanos, L. Mueller, J. Magn. Reson. 143, 69–78 (2000)

    Article  ADS  Google Scholar 

  27. R.L. Haner, J.Y. Lee, Flow-Through NMR Having a Replacable NMR Flow Tube, US Patent Number US 6177798 B1 (Varian Associates Inc., 2001)

  28. W. Hiller, M. Hehn, T. Hofe, K. Oleschko, Anal. Chem. 82, 8244–8250 (2010)

    Article  Google Scholar 

  29. F. Dalitz, M. Maiwald, G. Guthausen, Chem. Eng. Sci. 75, 318–326 (2012)

    Article  Google Scholar 

  30. F. Dalitz, L. Kreckel, M. Maiwald, G. Guthausen, Appl. Magn. Reson. 45, 411–425 (2014)

    Article  Google Scholar 

  31. H.C. Torrey, Phys. Rev. 104, 563–565 (1956)

    Article  ADS  Google Scholar 

  32. F. Bloch, Phys. Rev. 70, 460 (1946)

    Article  ADS  Google Scholar 

  33. E.O. Stejskal, J. Chem. Phys. 43, 3597–3603 (1965)

    Article  ADS  Google Scholar 

  34. V. Chanteloup, P.S. Mirade, J. Food Eng. 90, 90–103 (2009)

    Article  Google Scholar 

  35. J.R. Waters, M.W. Simons, Build. Serv. Eng. Res. Technol. 23, 19–29 (2002)

    Article  Google Scholar 

  36. A.I. Zhernovoi, G.D. Latyshev, Nuclear Magnetic Resonance in a Flowing Liquid (Consultants Bureau, New York, 1965)

    Google Scholar 

  37. A. Nordon, A. Diez-Lazaro, C.W.L. Wong, C.A. McGill, D. Littlejohn, M. Weerasinghe, D.A. Mamman, M.L. Hitchman, J. Wilkie, Analyst 133, 339–347 (2008)

    Article  ADS  Google Scholar 

  38. M. Cudaj, G. Guthausen, T. Hofe, M. Wilhelm, Macromol. Chem. Phys. 213, 1933–1943 (2012)

    Article  Google Scholar 

  39. M. Cudaj, G. Guthausen, T. Hofe, M. Wilhelm, Macromol. Rapid Commun. 32, 665–670 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the German Research Foundation (DFG) for financial support of the instrumental facility Pro2NMR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Kespe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kespe, M., Förster, E., Nirschl, H. et al. Flowing Liquids in NMR: Numerical CFD Simulation and Experimental Confirmation of Magnetization Buildup. Appl Magn Reson 49, 687–705 (2018). https://doi.org/10.1007/s00723-018-1016-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-018-1016-z

Navigation