Advertisement

Applied Magnetic Resonance

, Volume 49, Issue 8, pp 757–766 | Cite as

Double Electron–Electron Resonance Between Trapped Electron and Hole in a Semiconductor

  • Ikuko Akimoto
  • Takao Sekiya
Original Paper

Abstract

We demonstrate the spin interactions between dispersedly trapped electrons and holes in a semiconductor using the double electron–electron resonance (DEER) method of the pulsed electron paramagnetic resonance (EPR) techniques. An aluminum-doped titanium dioxide crystal is adopted as a spin system, in which optically generated electrons and holes are trapped, to reveal EPR signals that appear close to each other at a selected crystal orientation under an external magnetic field. We used the four-pulse DEER method by applying two microwave frequencies to a microwave cavity for pumping electrons and probing holes at the optimum temperature of 32 K. The dipolar modulation in the probed signal by pumping interacting spins was successfully detected. The observed non-oscillating decay shape indicates that the detected interaction is caused by widely distributed trapped electron and hole spins over long distances. We were able to extract a spin-pair distribution function by the first derivative of a background-corrected curve, referring to a previously reported method.

Notes

Acknowledgements

This work was supported by a JSPS KAKENHI, Grant No. JP 23540369.

References

  1. 1.
    K.J. van Schooten, D.L. Baird, M.E. Limes, J.M. Lupton, C. Boehme, Nat. Commun. 6, 6688 (2015).  https://doi.org/10.1038/ncomms7688 CrossRefGoogle Scholar
  2. 2.
    S. Kotler, N. Akerman, N. Navon, Y. Glickman, R. Ozeri, Nature 510, 376 (2014)ADSCrossRefGoogle Scholar
  3. 3.
    F. Hoehne, J. Lu, A.R. Stegner, M. Stutzmann, Martin S. Brandt, M. Rohrmueller, W.G. Schmidt, U. Gerstmann, Phys. Rev. Lett. 106, 196101 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    M. Suckert, F. Hoehne, L. Dreher, M. Kuenzl, M. Stutzmann, M. S. Brandt, H. Huebl, Mol. Phys. 111, 2690–2695 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    C. Boehme, D.R. McCamey, K.J. van Schooten, W.J. Baker, S.-Y. Lee, S.-Y. Paik, J.M. Lupton, Phys. Status Solidi B 246, 2750–2755 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    V. Stepanov, S. Takahashi, Phys. Rev. B 94, 024421 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    A. Schweiger, G. Jeschke, Principles of Pulse Electron Paramagnetic Resonance, Chapt. 13 (Oxford University Press, Oxford, 2001)Google Scholar
  8. 8.
    V. Pfannebecker, H. Klos, M. Hubrich, T. Volkmer, A. Heuer, U. Wiesner, H.W. Spiess, J. Phys. Chem. 100, 13428 (1996)CrossRefGoogle Scholar
  9. 9.
    V. Meyer, M.A. Swanson, L.J. Clouston, P.J. Boratynski, R.A. Stein, H.S. Mchaourab, A. Rajca, S.S. Eaton, G.R. Eaton, Biophys. J. 108, 1213–1219 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    A. Schnegg, A.A. Dubinskii, M.R. Fuchs, Y.A. Grishin, E.P. Kirilina, W. Lubitz, M. Plato, A. Savitsky, K. Moebius, Appl. Magn. Reson. 31, 59–98 (2007)CrossRefGoogle Scholar
  11. 11.
    M. Flores, A. Savitsky, M.L. Paddock, E.C. Abresch, A.A. Dubinskii, M.Y. Okamura, W. Lubitz, K. Möbius, J. Phys. Chem. B 114, 16894–16901 (2010)CrossRefGoogle Scholar
  12. 12.
    I. Nakagawa, Y. Uchiyama, and T. Sekiya, in Proceedings of the XXth Symposium of Association for Condenced Matter Photophysics, 2012, p. 133 (in Japanese) Google Scholar
  13. 13.
    R. Leonelli, J.L. Brebner, Phys. Rev. B 33, 8649–8656 (1985)ADSCrossRefGoogle Scholar
  14. 14.
    C.J. Delbecq, Y. Toyozawa, P.H. Yuster, Phys. Rev. B 9, 4497 (1974)ADSCrossRefGoogle Scholar
  15. 15.
    M. Kobayashi, M. Ishii, Y. Usuki, Nucl. Instr. Methods A 333, 429 (1993)ADSCrossRefGoogle Scholar
  16. 16.
    M. Sonoda, M. Takano, J. Miyahara, H. Kato, Radiology 148, 833 (1983)CrossRefGoogle Scholar
  17. 17.
    T. Sekiya, Y. Takeda, S. Ohya, T. Kodaira, Phys. Status Solidi C 8, 173–176 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    T. Sekiya, N. Kamiya, S. Ohya, S. Kurita, T. Kodaira, J. Phys. Soc. Jpn. 81, 124701 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    T. Sekiya, Y. Takeda, N. Kamiya, S. Kurita, T. Kodaira, Phys. Status Solidi C 3, 3603–3606 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    A.D. Milov, K.M. Salikhov, M.D. Schirov, Sov. Phys. Solid State 23, 565–569 (1981)Google Scholar
  21. 21.
    A.D. Milov, A.G. Maryasov, Yu.D. Tsvetkov, Appl. Magn. Reson. 15, 107–143 (1998)CrossRefGoogle Scholar
  22. 22.
    A.D. Milov, Yu.D. Tsvetkov, Appl. Magn. Reson. 12, 495 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Wakayama UniversityWakayamaJapan
  2. 2.Yokohama National UniversityYokohamaJapan

Personalised recommendations