Advertisement

Applied Magnetic Resonance

, Volume 49, Issue 8, pp 853–867 | Cite as

Impact of the Characteristic Impedance of Coaxial Lines on the Sensitivity of a 750-MHz Electronically Tunable EPR Resonator

  • Ririko Nakaoka
  • Denis A. Komarov
  • Shingo Matsumoto
  • Hiroshi Hirata
Original Paper
  • 129 Downloads

Abstract

A 750-MHz electronically tunable resonator was investigated in terms of the sensitivity of electron paramagnetic resonance (EPR) signal detection. The conversion efficiency of the radio-frequency magnetic field was calculated for resonators with 50- and 100-Ω coaxial coupling lines using three-dimensional (3D) microwave field and microwave circuit simulators. Based on the simulation results, two tunable resonators were physically constructed and compared in terms of EPR signal sensitivity using a nitroxyl radical solution. While the resonator with 100-Ω coaxial lines provided 14% greater signal intensity, its signal-to-noise ratio was lower than that of the resonator with 50-Ω lines. To demonstrate the capability of the constructed tunable resonator for EPR imaging experiments, a solution of nitroxyl radical and the leg of a tumor-bearing mouse were visualized.

Notes

Acknowledgements

The nitroxyl radical probe 2H,15N-DCP used in this study was kindly provided by Dr. Igor A. Kirilyuk, Novosibirsk Institute of Organic Chemistry, Novosibirsk, Russia. We appreciate Kumiko Yamamoto and Prof. Osamu Inanami at the Graduate School of Veterinary Medicine, Hokkaido University, for their help in the experiments with tumor-bearing mice. This work was supported in part by JSPS KAKENHI Grant numbers 26249057 and 16K12862.

References

  1. 1.
    S. Matsumoto, F. Hyodo, S. Subramanian, N. Devasahayam, J. Munasinghe, E. Hyodo, C. Gadisetti, J.A. Cook, J.B. Mitchell, M.C. Krishna, J. Clin. Invest. 118, 1965–1973 (2008)Google Scholar
  2. 2.
    S. Koda, J. Goodwin, V.V. Khramtsov, H. Fujii, H. Hirata, Anal. Chem. 84, 3833–3837 (2012)CrossRefGoogle Scholar
  3. 3.
    H. Fujii, H. Sato-Akaba, M. Emoto, K. Itoh, Y. Ishihara, H. Hirata, Magn. Reson. Imaging 31, 130–138 (2013)CrossRefGoogle Scholar
  4. 4.
    S.V. Sundramoorthy, B. Epel, H.J. Halpern, J. Magn. Reson. 240, 45–51 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    G.R. Eaton, S.S. Eaton, D.P. Barr, R.T. Weber, Quantitative EPR (Springer, Wien, 2010), pp. 79–90CrossRefGoogle Scholar
  6. 6.
    G.A. Rinard, S.S. Eaton, G.R. Eaton, C.P. Poole Jr., H.A. Farach, in Handbook of Electron Spin Resonance, vol. 2, ed. by C.P. Poole Jr., H.A. Farach (Springer, New York, 1999), pp. 1–23Google Scholar
  7. 7.
    G.R. Eaton, S.S. Eaton, D.P. Barr, R.T. Weber, Quantitative EPR (Springer, Wien, 2010), pp. 37–61CrossRefGoogle Scholar
  8. 8.
    T. Amida, R. Nakaoka, D.A. Komarov, K. Yamamoto, O. Inanami, S. Matsumoto, H. Hirata, IEEE Trans. Biomed. Eng. (2017).  https://doi.org/10.1109/tbme.2017.2743232 Google Scholar
  9. 9.
    Y. Kawada, H. Hirata, H. Fujii, J. Magn. Reson. 184, 29–38 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    T. Haga, H. Hirata, P. Lesniwski, K.M. Rychert, B.B. Williams, A.B. Flood, H.M. Swartz, Concepts Magn. Reson. B 43B, 32–40 (2013)CrossRefGoogle Scholar
  11. 11.
    H. Sugawara, H. Hirata, S. Petryakov, P. Lesniewski, B.B. Williams, A.B. Flood, H.M. Swartz, IEEE Trans. Biomed. Eng. 61, 1894–1901 (2014)CrossRefGoogle Scholar
  12. 12.
    H. Hirata, H. Watanabe, M. Kumada, K. Itoh, H. Fujii, NMR Biomed. 17, 295–302 (2004)CrossRefGoogle Scholar
  13. 13.
    J.H. Freed, D.S. Leniart, J.S. Hyde, J. Chem. Phys. 47, 2762–2773 (1967)ADSCrossRefGoogle Scholar
  14. 14.
    H. Sato-Akaba, H. Fujii, H. Hirata, Rev. Sci. Instrum. 79, 123701 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    H. Sato-Akaba, Y. Kuwahara, H. Fujii, H. Hirata, Anal. Chem. 81, 7501–7506 (2009)CrossRefGoogle Scholar
  16. 16.
    S. Subramanian, N. Devasahayam, R. Murugesan, K. Yamada, J. Cook, A. Taube, J.B. Mitchell, J.A.B. Lohman, M.C. Krishna, Magn. Reson. Med. 48, 370–379 (2002)CrossRefGoogle Scholar
  17. 17.
    K. Matsumoto, B. Chandrika, J.A.B. Lohman, J.B. Mitchell, M.C. Krishna, S. Subramanian, Magn. Reson. Med. 50, 865–874 (2003)CrossRefGoogle Scholar
  18. 18.
    H. Jang, S. Subramanian, N. Devasahayam, K. Saito, S. Matsumoto, M.C. Krishna, A.B. McMillan, Magn. Reson. Med. 70, 1173–1181 (2013)CrossRefGoogle Scholar
  19. 19.
    A.A. Gorodetsky, I.A. Kirilyuk, V.V. Khramtsov, D.A. Komarov, Magn. Reson. Med. 76, 350–358 (2016)CrossRefGoogle Scholar
  20. 20.
    H. Kubota, D.A. Komarov, H. Yasui, S. Matsumoto, O. Inanami, I.A. Kirilyuk, V.V. Khramtsov, H. Hirata, Magn. Reson. Mater. Phys. 30, 291–298 (2017)CrossRefGoogle Scholar
  21. 21.
    H.D. Suit, C. Suchato, Radiology 89, 713–719 (1967)CrossRefGoogle Scholar
  22. 22.
    F. Hyodo, S. Matsumoto, N. Devasahayam, C. Dharmaraj, S. Subramanian, J.B. Mitchell, M.C. Krishna, J. Magn. Reson. 197, 181–185 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    M.C. Emoto, H. Sato-Akaba, H. Hirata, H.G. Fujii, Free Radic. Biol. Med. 74, 222–228 (2014)CrossRefGoogle Scholar
  24. 24.
    H. Hirata, T. Walczak, H.M. Swartz, Rev. Sci. Instrum. 72, 2839–2841 (2001)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Bioengineering and Bioinformatics, Graduate School of Information Science and TechnologyHokkaido UniversitySapporoJapan

Personalised recommendations