Applied Magnetic Resonance

, Volume 49, Issue 7, pp 631–652 | Cite as

Rock-Type Definition and Pore Characterization of Tight Carbonate Rocks Based on Thin Sections and MICP and NMR Experiments

  • Fei Tian
  • Weimin Wang
  • Naigui Liu
  • Jiaqi Jiang
  • Congkai Niu
  • Yuandong Zhang
  • Yaxi Li
Original Paper


Thick tight Ordovician carbonate rocks are present at depths exceeding 5300 m in the Tahe oilfield and their matrix is considered to contain no storage space. An integrated petrographical and petrophysical study was conducted on a set of 25 tight carbonate core samples from Ordovician strata, covering a wide range of lithologies and textures. Six carbonate rock types were characterized by integrating both petrographical and petrophysical data, including thin-section observations and porosity, permeability, mercury injection capillary pressure and nuclear magnetic resonance (NMR) measurements. We found that thick grainstone and limestone with half-filled fractures exhibited good reservoir properties. NMR testing is an invaluable tool for characterizing pore structures in tight carbonate rocks. For example, six rock types can be identified from the NMR T2 distributions and the changes in pore volume under different pressures (up to 20 MPa) can be calculated. NMR technology can be used to perform rapid and accurate rock-type identification and pore network evaluation in tight carbonate rocks. The results provide an experimental foundation for NMR logging interpretations and advance the understanding of geological and geophysical characteristics of ultra-deep carbonate reservoirs.



This study was supported by National Basic Research Program of China (973 Program, Grant No. 2015CB250902), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA14040404), the Chinese National Major Fundamental Research Developing Project (Grant No. 2017ZX05008-004), the Chinese National Natural Science Foundation (Grant Nos. 41502149, and U1663204) and the China Postdoctoral Foundation Funded Project (Grant No. 2015M570148). We are deeply grateful to the Tahe Oilfield Branch Company SINOPEC for supplying the data and allowing this paper to be published. We thank two anonymous reviewers for their thorough and critical reviews and suggestions, which have improved the manuscript.


  1. 1.
    C. Rühl, BP statistical review of world energy 2007. ©BP (2007)Google Scholar
  2. 2.
    W. Zhao, S. Hu, L. Wei, T. Wang, Y. Li, Nat. Gas Ind. 1, 14–23 (2014)Google Scholar
  3. 3.
    G.Y. Zhu, M. Wang, T.W. Zhang, Identification of polycyclic sulfides hexahydrodibenzothiophenes and their implications for heavy oil accumulation in ultra-deep strata in Tarim Basin. Mar. Pet. Geol. 78, 439–447 (2016)CrossRefGoogle Scholar
  4. 4.
    F. Tian, Q. Jin, X. Lu, Y. Lei, L. Zhang, S. Zhang, Mar. Pet. Geol. 69(1), 53–73 (2016)CrossRefGoogle Scholar
  5. 5.
    X. Lu, Y. Wang, F. Tian, X. Li, D. Yang, T. Li, Mar. Pet. Geol. 86, 587–605 (2017)CrossRefGoogle Scholar
  6. 6.
    H. Zeng, R. Loucks, X. Janson, G. Wang, Y. Xia, B. Yuan, AAPG Bull. 95(12), 2061–2083 (2011)CrossRefGoogle Scholar
  7. 7.
    S.Z. Sun, Z. Liu, N. Dong, Y. Zhang, L. Yu, P. Wang, in Society of Exploration Geophysicists Annual Meeting (New Orleans, USA, 18–23 October 2015), p. 2821–2825Google Scholar
  8. 8.
    Q. Jin, F. Tian, J. Chin. Univ. Pet. 37, 515–521 (2013)Google Scholar
  9. 9.
    Q. Jin, F. Tian, H. Zhang, Acta Pet. Sin. 36(7), 791–798 (2015)CrossRefGoogle Scholar
  10. 10.
    A.R. Adebayo, M.E. Kandil, T.M. Okasha, M.L. Sanni, Int. J. Greenhouse Gas Control 63, 1–11 (2017)CrossRefGoogle Scholar
  11. 11.
    G. Mariappan, N. Sundaraganesan, Spectrochim Acta A 110(6), 169–178 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    X. Ge, Y. Fan, Y. Cao, Appl. Magn. Reson. 45(2), 155–167 (2014)CrossRefGoogle Scholar
  13. 13.
    M. Claverie, C. Reynaud, in SPE Europec Featured at 78th EAGE Conference and Exhibition (Vienna, Austria, 30 May-2 June 2016), SPE-180182-MSGoogle Scholar
  14. 14.
    F. Deng, L. Xiao, M. Wang, Appl. Magn. Reson. 47(11), 1–15 (2016)CrossRefGoogle Scholar
  15. 15.
    U. Farooq, R. Iskandar, E.S.M. Radwan, M.A.H. Hozayen, in Abu Dhabi International Petroleum Exhibition and Conference (Abu Dhabi, UAE, 10-13 November, 2014), SPE-171932-MSGoogle Scholar
  16. 16.
    Y. Li, in Society of Exploration Geophysicists Rock Physics & Borehole Geophysics Workshop (Beijing, China, 28-30 August, 2016), p. 56–59Google Scholar
  17. 17.
    B. Vik, K.E. Sylta, A. Skauge, Transp. Porous Media 93(3), 561 (2012)CrossRefGoogle Scholar
  18. 18.
    M.F. Rezende, S.N. Tonietto, M.C. Pope, AAPG Bull. 97(11), 2085–2101 (2013)CrossRefGoogle Scholar
  19. 19.
    Z.L. He, S.T. Peng, T. Zhang, Oil Gas Geol. 31(6), 743–752 (2010)Google Scholar
  20. 20.
    F. Tian, X. Lu, S. Zheng, H. Zhang, Y. Rong, D. Yang, Open Geosci. 9, 266–280 (2017)CrossRefGoogle Scholar
  21. 21.
    T.A. Cheema, C.Y. Lee, G.M. Kim, J.G. Hong, M.K. Kwak, C.W. Park, Int. J. Precis. Eng. Manuf. 15(7), 1405–1410 (2014)CrossRefGoogle Scholar
  22. 22.
    O. Faÿ-Gomord, J. Soete, K. Katika, S. Galaup, B. Caline, F. Descamps, Mar. Pet. Geol. 75, 252–271 (2016)CrossRefGoogle Scholar
  23. 23.
    E. Grunewald, R. Knight, Geophysics 74, 215–221 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    W.E. Kenyon, Soc. Petrophys. Well Log Anal. 38, 21–43 (1997)Google Scholar
  25. 25.
    B. Vincent, M. Fleury, Y. Santerre, B. Brigaud, NMR relaxation of neritic carbonates: an integrated petrophysical and petrographical approach. J. Appl. Geophys. 74, 38–58 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    X.M. Ge, Y.R. Fan, Y.F. Xiao, J.Y. Liu, D.H. Xing, D.N. Gu, S.G. Deng, Quantitative evaluation of the heterogeneity for tight sand based on the nuclear magnetic resonance imaging. J. Nat. Gas Sci. Eng. 38, 74–80 (2017)CrossRefGoogle Scholar
  27. 27.
    R.J. Dunham, Classif. Carbonate Rocks 1, 108–121 (1962)Google Scholar
  28. 28.
    F.F. Wang, T.Z. Tang, T.Y. Liu, H.N. Zhang, Appl. Magn. Reson. 47(4), 1–13 (2016)CrossRefGoogle Scholar
  29. 29.
    M. Liu, R. Xie, C. Li, L. Gao, Appl. Magn. Reson. 48(4), 1–21 (2017)Google Scholar
  30. 30.
    Z. Yang, Y. Zhang, H. Li, X. Zheng, Q. Lei, Earth Sci. 42(8), 1333–1339 (2017)Google Scholar
  31. 31.
    F. Rashid, P.W.J. Glover, P. Lorinczi, D. Hussein, R. Collier, J. Lawrence, Permeability prediction in tight carbonate rocks using capillary pressure measurements. Mar. Pet. Geol. 68, 536–550 (2015)CrossRefGoogle Scholar
  32. 32.
    X.M. Ge, Y.R. Fan, J.T. Li, M.A. Zahid, Pore structure characterization and classification using multifractal theory—An application in Santanghu basin of western China. J. Pet. Sci. Eng. 127, 297–304 (2015)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Fei Tian
    • 1
  • Weimin Wang
    • 2
  • Naigui Liu
    • 1
  • Jiaqi Jiang
    • 2
  • Congkai Niu
    • 3
  • Yuandong Zhang
    • 2
  • Yaxi Li
    • 3
  1. 1.Key Laboratory of Petroleum Resources Research, Institute of Geology and GeophysicsChinese Academy of SciencesBeijingChina
  2. 2.Institute of Quantum Electronics of Peking UniversityBeijingChina
  3. 3.College of GeosciencesChina University of PetroleumBeijingChina

Personalised recommendations