Applied Magnetic Resonance

, Volume 49, Issue 4, pp 403–413 | Cite as

Impregnation of Polycarbonate by Paramagnetic Probe 2,2,6,6-Tetramethyl-4-Hydroxy-Piperidine-1-Oxyl (TEMPOL) in Supercritical CO2

  • A. A. Akovantseva
  • V. N. Bagratashvili
  • N. A. Chumakova
  • E. N. Golubeva
  • O. I. Gromov
  • S. V. Kuzin
  • M. Ya. Melnikov
  • P. S. Timashev
Original Paper


The aim of the research was to test the advantages of spin probe electron paramagnetic resonance approach in studying polymers impregnation with organic molecules in supercritical CO2 (scCO2) The impregnation of bisphenol A polycarbonate with the spin probe TEMPOL was carried out at 307–343 K and 11.6–35 MPa. The mean and local concentrations of the spin probe in the polymer were evaluated. An increase in temperature and pressure resulted in a more even distribution of the dopant in the polymer matrix. It was observed that, at 307 K and 19.6 MPa, the spin probe was located only near the surface of the sample. Local mobility of the spin probe molecules was found to be similar in polycarbonate films impregnated in scCO2 and cast from dichloroethane solution. It was shown that changes in the structure of the surface and bulk of the polymer detected by the atomic force and optical polarization microscopy are not directly related with the distribution of the dopant molecules and their average content in the polymer.



We thank the Russian Science Foundation (Grant 14-33-00017) for financial support related to the supercritical fluid impregnation of polycarbonate by TEMPOL. We also are grateful to the Russian Foundation for Basic Research (project nos. 16-03-00333 and 17-02-00445) for financial support related to EPR spectra registration and analysis.


  1. 1.
    M.F. Kemmere, T. Meyer, Supercritical Carbon dioxide in Polymer Reaction Engineering (Wiley-VCH, Weinheim, 2005)CrossRefGoogle Scholar
  2. 2.
    F.M. Gumerov, A.N. Sabirzyanov, G.I. Gumerova, Sub- and Supercritical Fluids in Polymer Processing (Fen Publisher, Kazan, 2007)Google Scholar
  3. 3.
    Yu. Kuwahara, M. Morita, T. Nagami, A. Tanaka, T. Iwanaga, K. Kumamaru, T. Sawada, M. Sasaki, M. Goto, M. Sato, Jpn. J. Appl. Phys. 48, 06FF13 (2009)Google Scholar
  4. 4.
    S.G. Kazarian, Polym. Sci. Ser. C 42, 78–101 (2000)Google Scholar
  5. 5.
    T. Hasell, L. Lagonigro, A.C. Peacock, S. Yoda, P.D. Brown, P.J.A. Sazio, S.M. Howdle, Adv. Funct. Mater. 18, 1265–1271 (2008)CrossRefGoogle Scholar
  6. 6.
    E. Bach, E. Cleve, E. Schollmeyer, Rev. Prog. Color. 32, 88–102 (2002)CrossRefGoogle Scholar
  7. 7.
    A.I. Cooper, Adv. Mater. 15, 1049–1059 (2003)CrossRefGoogle Scholar
  8. 8.
    O.S. Fleming, K.L.A. Chan, S.G. Kazarian, Polymer 47, 4649–4658 (2006)CrossRefGoogle Scholar
  9. 9.
    A.R. Albunia, R. Graf, A. Grassi, G. Guerra, H.W. Spiess, Macromolecules 42, 4929–4931 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    V.N. Bagratashvili, A.O. Rybaltovskii, S.S. Ilyukhin, O.L. Zakharkina, V.Ya. Panchenko, P.S. Timashev, M.A. Timofeev, S.I. Tsypina, V.I. Yusupov, A.B. Evlyukhin, B.N. Chichkov, Laser Phys. 24, 126001 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    D. Hinderberger, in Top. Curr. Chem., vol. 321, ed. by M. Drescher, G. Jeschke (Springer, Berlin, 2012), pp. 67–90Google Scholar
  12. 12.
    J. Pilar, in Advanced ESR Methods in Polymer Research, vol. 2, ed. by S. Schlick (Wiley-VCH, Weinheim, 2006), pp. 133–164Google Scholar
  13. 13.
    A.M. Wasserman, A.L. Kovarsky, Spin Labels and Probes in Physical Chemistry of Polymers (Nauka, Moscow, 1986)Google Scholar
  14. 14.
    A.S. Kopylov, V.A. Radtsig, N.N. Glagolev, A.B. Solovieva, V.N. Bagratashvili, Russ. J. Phys. Chem. B 9, 998–1004 (2015)CrossRefGoogle Scholar
  15. 15.
    E.N. Golubeva, O.I. Gromov, N.A. Chumakova, E.D. Feklichev, M.Ya. Melnikov, V.N. Bagratashvili, Russ. J. Phys. Chem. B 10, 1229–1236 (2016)CrossRefGoogle Scholar
  16. 16.
    N.V. Minaev, R.F. Patent 147199 (2014)Google Scholar
  17. 17.
    R. Span, W. Wagner, J. Phys. Chem. Ref. Data 25(6), 1509–1596 (1996)ADSCrossRefGoogle Scholar
  18. 18.
    G.R. Eaton, S.S. Eaton, D.P. Barr, R.T. Weber, Quantitative EPR (Springer, Wien, 2010)CrossRefGoogle Scholar
  19. 19.
    A.I. Kokorin, in Nitroxides—Theory, Experiment and Applications, ed. by A.I. Kokorin (InTech, Rijeca, 2012), pp. 113–164Google Scholar
  20. 20.
    Y. Sun, M. Matsumoto, M. Haruki, S. Kihara, S. Takishima, J. Supercrit. Fluids 113, 144–149 (2016)CrossRefGoogle Scholar
  21. 21.
    Y. Sun, M. Matsumoto, K. Kitashima, M. Haruki, S. Kihara, S. Takishima, J. Supercrit. Fluids 95, 35–43 (2014)CrossRefGoogle Scholar
  22. 22.
    M. Tang, T.B. Du, Y.P. Chen, J. Supercrit. Fluids 28, 207–218 (2004)CrossRefGoogle Scholar
  23. 23.
    D. Varga, S. Alkin, P. Gluschitz, B. Péter-Szabó, E. Székely, T. Gamse, J. Supercrit. Fluids 116, 111–116 (2016)CrossRefGoogle Scholar
  24. 24.
    J.E. Wertz, J.R. Bolton, Electron Spin Resonance (Springer, Berlin, 1986)CrossRefGoogle Scholar
  25. 25.
    D.A. Chernova, A.Kh. Vorobiev, J. Polym. Sci. Part B Polym. Phys. 47, 107–120 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    D.A. Chernova, A.Kh. Vorobiev, J. Polym. Sci. Part B Polym. Phys. 47, 563–575 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    Y. Fukasawa, J. Chen, H. Saito, J. Polym. Sci. Part B Polym. Phys. 46, 843–846 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Chemistry DepartmentLomonosov Moscow State UniversityMoscowRussian Federation
  2. 2.Institute of Photonic Technologies, Research Center “Crystallography and Photonics” RASMoscowRussian Federation
  3. 3.Institute for Regenerative MedicineSechenov UniversityMoscowRussian Federation

Personalised recommendations