Applied Magnetic Resonance

, Volume 49, Issue 4, pp 381–388 | Cite as

FMR Investigation of the Magnetic Anisotropy in Films Synthesized by Co+ Implantation into Si

  • V. V. Chirkov
  • G. G. Gumarov
  • V. Yu. Petukhov
  • M. M. Bakirov
  • V. I. Nuzhdin
  • V. F. Valeev
Original Paper


Thin ferromagnetic films with the uniaxial magnetic anisotropy were synthesized by Co+ implantation into single-crystal silicon in the magnetic field. It was concluded that the formation of the induced magnetic anisotropy is due to the directional atomic pair ordering (Neel–Taniguchi model). The synthesized films were studied by the ferromagnetic resonance (FMR) method in the temperature range from 100 to 300 K. The FMR linewidth is almost independent of temperature, which is in agreement with the Raikher model describing the magnetic resonance of uniaxial magnetic particles. It is found that the temperature dependence of the anisotropy constant is linear. This dependence can be associated with the difference in the coefficients of thermal expansion of the Si (111) substrate and the ion-beam-synthesized cobalt silicide films.



The work was supported by the Fundamental Research Program of ONIT RAS № IV.3.3. “Element base of microelectronics, nanoelectronics and quantum computers, materials for micro- and nanoelectronics, microsystem technology”.


  1. 1.
    S.L. Zhang, M. Ostling, Crit. Rev. Solid State Mater. Sci. 28, 1 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    A. Ionescu, C.A.F. Vaz, T. Trypiniotis, C.M. Gurtler, H. GarciaMiquel, J.A.C. Bland, M.E. Vickers, R.M. Dalgliesh, S. Langridge, Y. Bugoslavsky, Y. Miyoshi, L.F. Cohen, K.R.A. Ziebeck, Phys. Rev. B 71, 094401 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    X. Zhao, S. Yu, S. Wu, M.C. Nguyen, C.-Z. Wang, K.-M. Ho, Phys. Rev. B 96, 024422 (2017)ADSCrossRefGoogle Scholar
  4. 4.
    V.Y. Petukhov, I.B. Khaibullin, M.M. Zaripov, R. Groetzschel, M. Voelskow, R. Klabes, Phys. Status Solidi A 96, 463–468 (1986)ADSCrossRefGoogle Scholar
  5. 5.
    G.G. Gumarov, V.Y. Petukhov, V.A. Zhikharev, V.F. Valeev, R.I. Khaibullin, Nucl. Instrum. Methods Phys. Res. B 267, 1600–1603 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    G.G. Gumarov, D.A. Konovalov, A.V. Alekseev, V.Y. Petukhov, V.A. Zhikharev, V.I. Nuzhdin, V.A. Shustov, Nucl. Instrum. Methods Phys. Res. B 282, 92–95 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    V.V. Chirkov, G.G. Gumarov, V.Y. Petukhov, A.E. Denisov, J. Surf. Investig. X-Ray Synchrotron Neutron Tech. 1, 142–146 (2018)Google Scholar
  8. 8.
    S. Chikazumi, in Physics of Ferromagnetism, 2nd edn. (Oxford University Press, Oxford, 1996), pp. 299–309Google Scholar
  9. 9.
    M. Farle, Rep. Prog. Phys. 61, 755–826 (1998)ADSCrossRefGoogle Scholar
  10. 10.
    G.A. Muller, E. Carpene, R. Gupta, P. Schaaf, K. Zhang, K.P. Lieb, Eur. Phys. J. B 48, 449–462 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    H.B. Callen, E. Callen, J. Phys. Chem. Solids 27, 1271 (1966)ADSCrossRefGoogle Scholar
  12. 12.
    J. McCord, I. Monch, J. Fassbender, A. Gerber, E. Quandt, J. Phys. D Appl. Phys. 42, 055006 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    S. Qiao, S. Nie, J. Zhao, X. Zhang, J. Appl. Phys. 117, 093904 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    C.A.F. Vaz, J.A.C. Bland, G. Lauhoff, Rep. Prog. Phys. 71, 056501 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    Y.S. Zhang, W. He, J. Ye, B. Hu, J. Tang, X.Q. Zhang, Z.H. Cheng, Phys. B 512, 32–38 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    M. Grimsditch, A. Hoffmann, P. Vavassori, H. Shi, D. Lederman, Phys. Rev. Lett. 90, 257201 (2003)ADSCrossRefGoogle Scholar
  17. 17.
    V.Y. Petukhov, N.R. Khabibullina, M.I. Ibragimova, A.A. Bukharaev, D.A. Biziaev, E.P. Zheglov, G.G. Gumarov, R. Muller, Appl. Magn. Reson. 32, 345–361 (2007)CrossRefGoogle Scholar
  18. 18.
    K. Zakeri, T. Kebe, J. Lindner, M. Farle, J. Magn. Magn. Mater. 299, 1–10 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    K. Lenz, E. Kosubek, K. Baberschke, H. Wende, J. Herfort, H.P. Schonherr, K.H. Ploog, Phys. Rev. B 72, 144411 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    B.A. Belyaev, A.V. Izotov, JETP Lett. 103, 41–45 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    M. Belmeguenai, F. Zighem, D. Faurie, H. Tuzcuoglu, S.M. Cherif, K. Westerholt, W. Seiler, P. Moch, Phys. Status Solidi A 209, 1328–1333 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    A.V. Alekseev, G.G. Gumarov, M.M. Bakirov, V.Y. Petukhov, V.I. Nuzhdin, J. Surf. Investig. X-Ray, Synchrotron Neutron Tech. 10, 608–611 (2016)CrossRefGoogle Scholar
  23. 23.
    Y.L. Raikher, V.I. Stepanov, Sov. Phys. JETP 75, 764 (1992)Google Scholar
  24. 24.
    G.S. Krinchik, Physics of Magnetic Phenomena (Moscow State University Press, Moscow, 1985), p. 107. (in Russian) Google Scholar
  25. 25.
    S. Gardelis, J. Androulakis, J. Giapintzakis, O. Monnereau, P.D. Buckle, Appl. Phys. Lett. 85, 3178 (2004)ADSCrossRefGoogle Scholar
  26. 26.
    B.N. Sahu, A.S. Doshi, R. Prabhu, N. Venkataramani, S. Prasad, R. Krishnan, AIP Adv. 6, 055928 (2016)ADSCrossRefGoogle Scholar
  27. 27.
    H. Katada, T. Shimatsu, I. Watanabe, H. Muraoka, Y. Sugita, Y. Nakamura, IEEE Trans. Magn. 36, 2905–2908 (2000)ADSCrossRefGoogle Scholar
  28. 28.
    B. Aktas, B. Heinrich, G. Woltersdorf, R. Urban, L.R. Tagirov, F. Yldz, K. Ozdoan, M. Ozdemir, O. Yalcin, B.Z. Rameev, J. Appl. Phys. 102, 013912 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    K. Zakeri, T. Kebe, J. Lindner, M. Farle, Phys. Rev. B 73, 052405 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    C.M. Fu, P.C. Kao, H.S. Hsu, Y.C. Chao, C.C. Yu, J.C.A. Huang, IEEE Trans. Magn. 38, 2667–2669 (2002)ADSCrossRefGoogle Scholar
  31. 31.
    S. Yoon, Hyperfine Interact. 231, 21–28 (2015)ADSCrossRefGoogle Scholar
  32. 32.
    B.K. Chatterjee, C.K. Ghosh, K.K. Chattopadhyay, J. Appl. Phys. 116, 153904 (2014)ADSCrossRefGoogle Scholar
  33. 33.
    J. Wang, F. Zhao, W. Wu, G.M. Zhao, J. Appl. Phys. 110, 096107 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    G. Long, H.W. Zhang, D. Li, R. Sabirianov, Z. Zhang, H. Zeng, Appl. Phys. Lett. 99, 202103 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • V. V. Chirkov
    • 1
  • G. G. Gumarov
    • 1
  • V. Yu. Petukhov
    • 1
  • M. M. Bakirov
    • 1
  • V. I. Nuzhdin
    • 1
  • V. F. Valeev
    • 1
  1. 1.Zavoisky Physical-Technical InstituteKazanRussia

Personalised recommendations