Skip to main content
Log in

Behavior of Sodium Lauroyl Sarcosinate in Solution and Binary Mixtures by Means NMR

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Measurements of the 1H and 13C chemical shifts as well as 1H spin–lattice relaxation times of sodium lauroyl sarcosinate (SLAS) in aqueous solutions and mixed binary systems with co-surfactants were carried out at various concentrations. It will be shown that changes in the chemical shifts for the N–CH2 groups in SLAS with increasing surfactant concentration can be used to estimate the ratio p cis /p trans of cis- and trans-isomers. The relative fraction p trans of molecules in trans-configurations increases the most in a narrow concentration range 0.007–0.034 mol/l, i.e., at the transition from the monomeric state to the micelle. The ratio p cis /p trans asymptotically decreases with increasing concentration, reaching a constant value at concentrations significantly above the critical micelle concentration. Thus, the ratio can be related to the process of micellization. If micellization takes place, the cis-isomer starts to transform into trans-isomer because the trans-isomer is more favorable in micelles. Because of the smaller cross section of the polar group region, the trans-conformation can be more easily incorporated into the micelle. In summary, the occurrence of micellar aggregates at low SLAS concentration in mixed systems can be clearly inferred from the nuclear magnetic resonance spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. K. Baczko, C. Larpent, P. Lesot, Tetrahedron Asymmetry 15, 971 (2004)

    Article  Google Scholar 

  2. R. Bordes, J. Tropsch, K. Holmberg, Langmuir 26(5), 3077 (2009)

    Article  Google Scholar 

  3. S. Mukherjee, A. Dan, S.C. Bhattacharya, A.K. Panda, S.P. Moulik, Langmuir 27, 5222 (2011)

    Article  Google Scholar 

  4. R. Bordes, K. Holmberg, Coll. Surf. A Physicochem. Eng. Asp. 391, 32 (2011)

    Article  Google Scholar 

  5. Y. Yamashita, H. Kunieda, E. Oshimura, K. Sakamoto, Langmuir 19, 4070 (2003)

    Article  Google Scholar 

  6. S. Ghosh, J. Dey, J. Coll. Int. Sci. 358, 208 (2011)

    Article  Google Scholar 

  7. M. Ambühl, F. Bangerter, P.L. Luisi, P. Skrabal, H.J. Watzke, Langmuir 9, 36 (1993)

    Article  Google Scholar 

  8. S. Barhoum, A. Yethira, J. Chem. Phys. 132, 024909–024911 (2010)

    Article  ADS  Google Scholar 

  9. M. Deng, X. Huang, R. Wu, Y. Wang, J. Phys. Chem. B 112, 10509 (2008)

    Article  Google Scholar 

  10. E.A.M. Gad, M.M.A. El-Sukkary, D.A. Ismail, JAOCS 74, 43 (1997)

    Google Scholar 

  11. A. Kaneko, P. Sehgal, H. Doe, Colloid Polym. Sci. 290, 323 (2012)

    Article  Google Scholar 

  12. D.M. Grant, B.V. Cheney, J. Am. Chem. Soc. 89, 5315 (1967)

    Article  Google Scholar 

  13. O. Soderman, P. Stilbs, W.S. Price, Concepts Magn. Reson. Part A 23A, 121 (2004)

    Article  Google Scholar 

  14. K. Yahagi, K. Tsuji, J. Coll. Int. Sci. 117, 415 (1987)

    Article  Google Scholar 

  15. J.T. Gerig, D.H. Peyton, D.F. Nicoli, J. Am. Chem. Sco. 104, 5034 (1982)

    Article  Google Scholar 

  16. E. Oshimura, Y. Yamashita, K. Sakamoto, J. Oleo Sci. 56, 115 (2007)

    Article  Google Scholar 

  17. H. Okabayashi, T. Yoshida, Y. Terada, K. Matsushita, J. Coll. Int. Sci. 87, 527 (1982)

    Article  Google Scholar 

  18. G. Cerichelli, L. Luchetti, G. Mancini, Langmuir 13, 4767 (1997)

    Article  Google Scholar 

  19. H. Takahashi, Y. Nakayama, H. Hori, K. Kihara, H. Okabayashi, M. Okuyama, J. Coll. Int. Sci. 54, 102 (1976)

    Article  Google Scholar 

  20. S. Borocci, G. Mancini, G. Cerichelli, L. Luchetti, Langmuir 15, 2627 (1999)

    Article  Google Scholar 

  21. H. Etori, H. Hirata, Y. Yamada, H. Okabayashi, M. Furusaka, Coll. Polym. Sci. 275, 263 (1997)

    Article  Google Scholar 

  22. J.N. Israelachvili, D.J. Mitchell, B.W. Niham, J. Chem. Soc. Faraday Trans. II, 1525 (1976)

    Article  Google Scholar 

Download references

Acknowledgments

M. Popova is very grateful to the Deutscher Akademischer Austauschdienst (DAAD) for financial support of the visit in Institute für Experimentelle Physik II und Organische Chemie of Universität Leipzig and Prof. Dr. Lothar Hennig from the Leipzig University for the scientific guidance and the help in all organizational questions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria V. Popova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popova, M.V., Michel, D. Behavior of Sodium Lauroyl Sarcosinate in Solution and Binary Mixtures by Means NMR. Appl Magn Reson 45, 353–364 (2014). https://doi.org/10.1007/s00723-014-0531-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-014-0531-9

Keywords

Navigation