Skip to main content
Log in

Evaluation of Disease Stage of Radiation-Induced Brain Injury: a DTI Study with Pathological Correlation

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The aim of this study is to evaluate if diffusion tensor imaging (DTI) can distinguish the disease process of radiation-induced brain injury when combined with apparent diffusion coefficient (ADC) and fractional anisotropy (FA) values. Twenty-one rabbits received irradiation of 100 Gy in the right brain hemisphere. Twelve rabbits were screened with magnetic resonance imaging (MRI) and DTI before radiation, and imaged at every week until week 9 following radiation. The rabbits that had MRI were euthanized at week 9 for histologic evaluation, while other nine rabbits without MRI were randomly killed for histologic evaluation at weeks 2, 4 and 6, respectively. From the DTI, the ADC and FA values were measured, and rADC and rFA were calculated. After radiation, the trend of the ADC value can be divided into three stages. In the first stage, the ADC value of the target tissues gradually decreased. In the second stage, the ADC value of white matter in the target tissues showed a recovery trend, back to the initial level similar to that in contralateral. In the third stage, the ADC value of white matter in the target tissue continues to increase over the ADC value of baseline and contralateral white matter. The FA value of radiation-targeted area showed continuous decreasing tendency. Pathological evaluation showed the different features in three stages. DTI can distinguish the different disease stages when combined with the ADC and FA values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D.T. Chua, J.S. Sham, D.L. Kwong, G.K. Au, Cancer 98, 74–80 (2003)

    Article  Google Scholar 

  2. R. Trivedi, A.R. Khan, P. Rana, S. Haridas, B.S. Hemanth, K. Manda, R.K. Rathore, R.P. Tripathi, S. Khushu, J. Neurosci. Res. 90, 2009–2019 (2012)

    Article  Google Scholar 

  3. Y.X. Wang, H. Huang, S.F. Leung, D.K. Yeung, Y.L. Chan, W.S. Poon, Br J Neurosurg. 27, 662–667 (2013)

  4. Y.X. Wang, A.D. King, H. Zhou, S.F. Leung, J. Abrigo, Y.L. Chan, C.W. Hu, D.K. Yeung, A.T. Ahuja, Radiology 254, 210–218 (2010)

    Article  Google Scholar 

  5. C.L. Armstrong, K. Gyato, A.W. Awadalla, R. Lustig, Z.A. Tochner, Neuropsychol. Rev. 14, 65–86 (2004)

    Article  Google Scholar 

  6. L. Pruzincova, J. Steno, M. Srbecky, P. Lalina, B. Rychly, E. Boljesikova, M. Chorvath, M. Novotny, V. Procka, I. Makaiova, V. Belan, Eur. Radiol. 19, 2716–2727 (2009)

    Article  Google Scholar 

  7. A.M. Peiffer, L. Shi, J. Olson, J.K. Brunso-Bechtold, Brain Res. 1351, 23–31 (2010)

    Article  Google Scholar 

  8. Y. Li, X. Shi, X. Rong, Y. Peng, Y. Tang, Radiat. Oncol. 8, 88 (2013)

    Article  Google Scholar 

  9. S. Wang, E.X. Wu, D. Qiu, L.H. Leung, H.F. Lau, P.L. Khong, Cancer Res. 69, 1190–1198 (2009)

    Article  Google Scholar 

  10. H.Z. Wang, S.J. Qiu, X.F. Lv, Y.Y. Wang, Y. Liang, W.F. Xiong, Z.B. Ouyang, Clin. Radiol. 67, 340–345 (2012)

    Article  Google Scholar 

  11. K.C. Chan, P.L. Khong, M.M. Cheung, S. Wang, K.X. Cai, E.X. Wu, J. Magn. Reson. Imaging 29, 1013–1020 (2009)

    Article  Google Scholar 

  12. S. Wang, D. Qiu, K.F. So, E.X. Wu, L.H. Leung, J. Gu, P.L. Khong, J. Neurooncol. 112, 9–15 (2013)

    Article  Google Scholar 

  13. J.D. Rabinov, J.L. Brisman, A.J. Cole, P.L. Lee, M.R. Bussiere, P.H. Chapman, J.S. Loeffler, G.R. Cosqrove, T. Chaves, R.G. Gonzalez, Stereotact. Funct. Neurosurg. 82, 156–164 (2004)

    Article  Google Scholar 

  14. K. Hideghety, I. Plangar, I. Man, G. Fekete, Z. Nagy, G. Volford, T. Tokes, E. Szabo, Z. Szabo, K. Brinyiczki, P. Mozes, I. Nemeth, Int J Radiat Biol. 89, 645–655 (2013)

    Google Scholar 

  15. J.S. Cheung, S.J. Fan, A.M. Chow, E.S. Hui, E.X. Wu, J. Magn. Reson. Imaging 30, 890–895 (2009)

    Article  Google Scholar 

  16. L. Shi, H. Zhang, Y.-F. Meng, J.-S. Su, G.-L. Shao, Appl. Magn. Reson. 38, 431–442 (2010)

    Google Scholar 

  17. M.B. Hulkower, D.B. Poliak, S.B. Rosenbaum, M.E. Zimmerman, M.L. Lipton, Am J Neuroradiol. 34(11), 2064–2074 (2013)

    Google Scholar 

  18. G. Panagiotakos, G. Alshamy, B. Chan, R. Abrams, E. Greenberg, A. Saxena, M. Bradbury, M. Edqar, P. Gutin, V. Tabar, PLoS One 2, e588 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This study is supported by Zhejiang Provincial Natural Science Foundation (Y2111306) and Zhejiang Provincial Medical Scientific Research Projects (2012RCA009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Shi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, L., Lang, XY., Shao, GL. et al. Evaluation of Disease Stage of Radiation-Induced Brain Injury: a DTI Study with Pathological Correlation. Appl Magn Reson 45, 427–436 (2014). https://doi.org/10.1007/s00723-014-0521-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-014-0521-y

Keywords

Navigation