Skip to main content
Log in

An interpretation of the condition for precautionary saving: the case of greater higher-order interest rate risk

  • Published:
Journal of Economics Aims and scope Submit manuscript

Abstract

This paper shows that an increase in interest rate risk via (mn)th-order stochastic dominance induces precautionary saving if, and only if, the measure of \((k+1)\)th-degree relative risk aversion exceeds k for all \(k=m,\ldots , n\). This result has the following interpretation. On the one hand, the measures of \((k+1)\)th-degree relative risk aversion for all \(k=m,\ldots , n\) capture the prudence effect with respect to a risk increase via (mn)th-order stochastic dominance, which favors precautionary saving. On the other hand, the thresholds, \(k=m,\ldots , n\), measure the elasticity of the change in the kth moment of future income with respect to saving. The adverse changes in higher moments of future income for all \(k=m,\ldots , n\) when saving increases give rise to the risk aversion effect with respect to a risk increase via (mn)th-order stochastic dominance, which limits precautionary saving. The necessary and sufficient condition for precautionary saving simply states that the prudence effect dominates the risk aversion effect, thereby making precautionary saving prevail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The two integers, n and m, satisfy that \(n\ge m\ge 1\).

  2. Throughout the paper, we use the notation, \(f^{(k)}(x)=\mathrm{d}^k f(x)/\mathrm{d}x^k\), to denote the kth derivative of the function, f(x). For the first, second, and third derivatives of f(x), we use the usual notation, \(f'(x)\), \(f''(x)\), and \(f'''(x)\), respectively.

  3. It is worth pointing out that \(-u'(x)\) having (mn)th-degree mixed risk aversion corresponds to u(x) having \((m+1,n+1)\)th-degree mixed risk aversion.

  4. See “Appendix B” for the derivation.

References

  • Brianti M, Magnani M, Menegatti M (2018) Optimal choice of prevention and cure under uncertainty on disease effect and cure effectiveness. Res Econ 72:327–342

    Article  Google Scholar 

  • Brockett PL, Golden LL (1987) A class of utility functions containing all the common utility functions. Manag Sci 33:955–964

    Article  Google Scholar 

  • Caballé J, Pomansky A (1996) Mixed risk aversion. J Econ Theory 71:485–513

    Article  Google Scholar 

  • Chiu WH, Eeckhoudt L (2010) The effect of stochastic wages and non-labor income on labor supply. J Econ 100:69–83

    Article  Google Scholar 

  • Chiu WH, Eeckhoudt L, Rey B (2012) On relative and partial risk attitudes: theory and implications. Econ Theory 50:151–167

    Article  Google Scholar 

  • Choi G, Kim I, Snow A (2001) Comparative statics predictions for changes in uncertainty in the portfolio and savings problems. Bull Econ Res 53:61–72

    Article  Google Scholar 

  • Courbage C, Loubergé H, Rey B (2018) On the properties of non-monetary measures for risks. Geneva Risk Insur Rev 43:77–94

    Article  Google Scholar 

  • Crainich D, Eeckhoudt L (2008) On the intensity of downside risk aversion. J Risk Uncertain 36:267–276

    Article  Google Scholar 

  • De Donno M, Magnani M, Menegatti M (2017) Changes in multiplicative risk and partial relative risk aversion: new interpretations and results. Working paper, Università degli Studi di Parma, Italy

  • Denuit MM, Eeckhoudt L (2013) Risk attitudes and the value of risk transformations. Int J Econ Theory 9:245–254

    Article  Google Scholar 

  • Ebert S, Nocetti DC, Schlesinger H (2018) Greater mutual aggregation. Manag Sci 64:2809–2811

    Article  Google Scholar 

  • Eeckhoudt L, Schlesinger H (2006) Putting risk in its proper place. Am Econ Rev 96:280–289

    Article  Google Scholar 

  • Eeckhoudt L, Schlesinger H (2008) Changes in risk and the demand for saving. J Monet Econ 55:1329–1336

    Article  Google Scholar 

  • Eeckhoudt L, Etner J, Schroyen F (2009) The value of relative risk aversion and prudence: a context-free interpretation. Math Soc Sci 58:1–7

    Article  Google Scholar 

  • Ekern S (1980) Increasing $N$th degree risk. Econ Lett 6:329–333

    Article  Google Scholar 

  • Fishburn PC (1980) Stochastic dominance and moments of distributions. Math Oper Res 5:94–100

    Article  Google Scholar 

  • Hadar J, Seo TK (1990) The effects of shifts in a return distribution on optimal portfolios. Int Econ Rev 31:721–736

    Article  Google Scholar 

  • Kimball MS (1990) Precautionary saving in the small and in the large. Econometrica 58:53–73

    Article  Google Scholar 

  • Kimball MS (1993) Standard risk aversion. Econometrica 61:589–611

    Article  Google Scholar 

  • Liu L (2014) Precautionary saving in the large: $n$th degree deteriorations in future income. J Math Econ 52:169–172

    Article  Google Scholar 

  • Magnani M (2017) A new interpretation of the condition for precautionary saving in the presence of an interest-rate risk. J Econ 120:79–87

    Article  Google Scholar 

  • Menezes CF, Wang H (2005) Increasing outer risk. J Math Econ 41:875–886

    Article  Google Scholar 

  • Menezes C, Geiss C, Tressler J (1980) Increasing downside risk. Am Econ Rev 70:921–932

    Google Scholar 

  • O’Brien GL (1984) Stochastic dominance and moment inequalities. Math Oper Res 9:475–477

    Article  Google Scholar 

  • Rothschild M, Stiglitz JE (1970) Increasing risk: I. A definition. J Econ Theory 2:225–243

    Article  Google Scholar 

  • Wang J, Gong P (2013) Labor supply with stochastic wage rate and non-labor income uncertainty. J Econ 109:41–55

    Article  Google Scholar 

  • Wong KP (2016) Precautionary self-insurance-cum-protection. Econ Lett 145:152–156

    Article  Google Scholar 

  • Wong KP (2017) A note on risky targets and effort. Insur Math Econ 73:27–30

    Article  Google Scholar 

  • Wong KP (2018) Comparative higher-order risk aversion and higher-order prudence. Econ Lett 169:38–42

    Article  Google Scholar 

Download references

Acknowledgements

I would like to thank Giacomo Corneo (the editor) and two anonymous referees for their helpful comments and suggestions. The usual disclaimer applies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kit Pong Wong.

Appendices

Appendix

A. Proof of Proposition 1

To show that statement (i) implies statement (ii), we differentiate Eq. (8) with respect to s and evaluate the resulting derivative at \(s=0\) to yield

$$\begin{aligned} \phi '(0)= & {} -u'\big (w_{\circ }-s^{\ell }\big )+\frac{1}{1+\delta }\int _{a}^{b}u'(s^{\ell }x)x\mathrm{d}F(x) \nonumber \\= & {} \frac{1}{1+\delta }\int _{a}^{b}u'(s^{\ell }x)x\mathrm{d}[F(x)-G(x)] \nonumber \\= & {} \frac{(s^{\ell })^{-2}}{1+\delta }\bigg \{\sum _{k=m}^{n-1} (-s^{\ell })^{k+1}u^{(k)}(s^{\ell }b) \bigg [-s^{\ell }b\frac{u^{(k+1)}(s^{\ell }b)}{u^{(k)}(s^{\ell }b)}-k\bigg ]\big [F_{k+1}(b)-G_{k+1}(b)\big ]\nonumber \\&\quad +\int _a^b (-s^{\ell })^{n+1}u^{(n)}(s^{\ell }x)\bigg [-s^{\ell }x\frac{u^{(n+1)}(s^{\ell }x)}{u^{(n)}(s^{\ell }x)}-n\bigg ] [F_n(x)-G_n(x)]\mathrm{d}x\bigg \}, \nonumber \\ \end{aligned}$$
(A.1)

where the second equality follows from Eq. (6), and the last equality follows from applying integration by parts and \(F_k(b)=G_k(b)\) for all \(k=2,\ldots , m\). Since \(F_k(b)\ge G_k(b)\) for all \(k=m+1,\ldots , n\) and \(F_n(x)\ge G_n(x)\) for all \(x\in [a,b]\), it follows from Eq. (10) that the right-hand side of Eq. (A.1) is positive, rendering that \(s^h>s^{\ell }\).

To show that statement (ii) implies statement (i), we suppose the contrary that there exist an integer, \(k\in \{m,\ldots ,n\}\), and a point, \(w'\in [s^{\ell }a,s^{\ell }b]\), such that Eq. (10) does not hold. By continuity, we have

$$\begin{aligned} -w\frac{u^{(k+1)}(w)}{u^{(k)}(w)}\le k, \end{aligned}$$
(A.2)

for all \(w\in [w'-\varepsilon _1,w'+\varepsilon _2]\), where \(\varepsilon _1\) and \(\varepsilon _2\) are two small non-negative numbers such that \(w'-\varepsilon _1\ge s^{\ell }a\) and \(w'+\varepsilon _2\le s^{\ell }b\). Let \(x_1=(w'-\varepsilon _1)/s^{\ell }\) and \(x_2=(w'+\varepsilon _2)/s^{\ell }\). It follows that \(a\le x_1<x_2\le b\). Construct F(x) such that \(F(x)=G(x)\) for all \(x\in [a,x_1]\bigcup [x_2,b]\), \(F_j(x_2)=G_j(x_2)\) for all \(j=2, \ldots ,k\), and \(F_k(x)\ge G_k(x)\) for all \(x\in [x_1,x_2]\). F(x) as such has more kth-degree risk than G(x) and thus F(x) is riskier than G(x) via (mn)th-order stochastic dominance. In this case, Eq. (A.1) becomes

$$\begin{aligned} \phi '(0)=\frac{(s^{\ell })^{k-1}}{1+\delta } \int _{x_1}^{x_2} (-1)^{k+1}u^{(k)}(s^{\ell }x)\bigg [-s^{\ell }x\frac{u^{(k+1)}(s^{\ell }x)}{u^{(k)}(s^{\ell }x)}-k\bigg ] [F_k(x)-G_k(x)]\mathrm{d}x. \nonumber \\ \end{aligned}$$
(A.3)

Since \(F_k(x)\ge G_k(x)\) for all \(x\in [x_1,x_2]\), it follows from Eq. (A.2) that the right-hand side of Eq. (A.3) is non-positive, rendering that \(s^h\le s^{\ell }\), a contradiction. Hence, Eq. (10) must hold for all \(w\in [s^{\ell }a,s^{\ell }b]\) and for all \(k=m,\ldots , n\).

B. Derivation of Eq. (18)

Applying kth-order Taylor expansions to \(\mathrm{E}[u(s^{\ell }{\tilde{x}}^{\ell })]\) and \(\mathrm{E}[u(s^{\ell }{\tilde{x}}^h)]\) around \(x=x^{\circ }\) yields

$$\begin{aligned} \mathrm{E}\big [u(s^{\ell }{\tilde{x}}^{\ell })\big ]-\mathrm{E}\big [u(s^{\ell }{\tilde{x}}^h)\big ]\approx & {} \sum _{j=0}^k \frac{1}{j!}u^{(j)}(s^{\ell }x^{\circ }) \Big \{\mathrm{E}\big [(s^{\ell }{\tilde{x}}^{\ell }-s^{\ell }x^{\circ })^j\big ]-\mathrm{E}\big [(s^{\ell }{\tilde{x}}^h-s^{\ell }x^{\circ })^j\big ]\Big \}\nonumber \\= & {} \frac{1}{k!}u^{(k)}(s^{\ell }x^{\circ })\Delta _k(s^{\ell }), \end{aligned}$$
(A.4)

where the equality follows from \(\mathrm{E}[({\tilde{x}}^{\ell })^j]=\mathrm{E}[({\tilde{x}}^h)^j]\) for all \(j=1,\ldots , k-1\) and \(\Delta _k(s^{\ell })=(s^{\ell })^k\{\mathrm{E}[({\tilde{x}}^{\ell })^k]-\mathrm{E}[({\tilde{x}}^h)^k]\}\). Likewise, we have

$$\begin{aligned} \mathrm{E}\big [u(sx^{\circ } +s^{\ell }{\tilde{x}}^{\ell })\big ]-\mathrm{E}\big [u(sx^{\circ }+s^{\ell }{\tilde{x}}^h)\big ] \approx \frac{1}{k!}u^{(k)}\big ((s^{\ell }+s)x^{\circ }\big )\Delta _k(s^{\ell }), \end{aligned}$$
(A.5)

and

$$\begin{aligned} \mathrm{E}\big [u\big ((s^{\ell }+s){\tilde{x}}^{\ell }\big )\big ]-\mathrm{E}\big [u\big ((s^{\ell }+s){\tilde{x}}^h\big )\big ] \approx \frac{1}{k!}u^{(k)}\big ((s^{\ell }+s)x^{\circ }\big )\Delta _k(s^{\ell }+s). \end{aligned}$$
(A.6)

Using Eqs. (A.4) and (A.5), we have

$$\begin{aligned} \lim _{s\rightarrow 0} \frac{\pi _p(sx^{\circ },s^{\ell })}{s}\approx & {} \frac{\Delta _k(s^{\ell })}{k!} \lim _{s\rightarrow 0} \frac{u^{(k)}(s^{\ell }x^{\circ })-u^{(k)}\Big ((s^{\ell }+s)x^{\circ }\Big )}{s} \nonumber \\= & {} \frac{u^{(k)}(s^{\ell }x^{\circ })\Delta _k(s^{\ell })}{k!s^{\ell }}\times -\frac{s^{\ell }}{u^{(k)}(s^{\ell }x^{\circ })} \frac{\partial u^{(k)}\Big ((s^{\ell }+s)x^{\circ }\Big )}{\partial s}\bigg |_{s=0} \nonumber \\= & {} \frac{u^{(k)}(s^{\ell }x^{\circ })\Delta _k(s^{\ell })}{k!s^{\ell }}\times -s^{\ell }x^{\circ } \frac{u^{(k+1)}(s^{\ell }x^{\circ })}{u^{(k)}(s^{\ell }x^{\circ })}. \end{aligned}$$
(A.7)

Using Eqs. (A.5) and (A.6), we have

$$\begin{aligned} \lim _{s\rightarrow 0} \frac{\pi _u(0,s^{\ell }+s)-\pi _u(sx^{\circ },s^{\ell })}{s}\approx & {} \frac{u^{(k)}(s^{\ell }x^{\circ })}{k!} \lim _{s\rightarrow 0} \frac{\Delta _k(s^{\ell }+s)-\Delta _k(s^{\ell })}{s} \nonumber \\= & {} \frac{u^{(k)}(s^{\ell }x^{\circ })\Delta _k(s^{\ell })}{k!s^{\ell }}\times \frac{s^{\ell }}{\Delta _k(s^{\ell })} \frac{\partial \Delta _k(s^{\ell }+s)}{\partial s}\bigg |_{s=0} \nonumber \\= & {} \frac{u^{(k)}(s^{\ell }x^{\circ })\Delta _k(s^{\ell })}{k!s^{\ell }}\times k. \end{aligned}$$
(A.8)

Substituting Eqs. (A.7) and (A.8) into the right-hand side of Eq. (17) yields Eq. (18).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wong, K.P. An interpretation of the condition for precautionary saving: the case of greater higher-order interest rate risk. J Econ 126, 275–286 (2019). https://doi.org/10.1007/s00712-018-0629-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00712-018-0629-x

Keywords

JEL Classification

Navigation