Fluorellestadite from burned coal dumps: crystal structure refinement, vibrational spectroscopy data and thermal behavior

Abstract

Nine different samples of fluorellestadite from Chelyabinsk, Kizel and Kuznetsk coal basins were studied by single-crystal X-ray diffraction analysis, thermal X-ray diffraction (25–800 °C), Infrared (IR) and Raman spectroscopy. Fluorellestadite is hexagonal, space group P63/m, the unit-cell parameters for the nine samples studied vary within rather small ranges: a = 9.415(5) – 9.4808(7) Å, c = 6.906(2) – 6.938(8) Å, V = 530.3(4) – 538.41(9) Å3. The mineral is isotypic with apatite, the structure is based upon isolated TO4 tetrahedra, where the T position is statistically occupied by Si4+ and S6+ with the ideal ratio Si:S equal to 1:1. The fluorine atoms are located in channels of the Ca4[(S,Si)O4]6 framework oriented parallel to the c axis. The thermal expansion of fluorellestadite is almost isotropic in the temperature range 25–800 °C (for ambient temperature: αa = 12.0·10−6 °C−1, αc = 11.9·10−6 °C−1; for 800 °C: αa = 18.2·10−6 °C−1, αc = 18.6·10−6 °C−1). A similar thermal behavior had been observed for fluorapatite. Despite the same structure motifs and close conditions of formation, the samples of fluorellestadite show different S/Si/P occupancies for T site and the F/Cl/OH (X-position) ratios.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Banno Y, Miyawaki R, Momma K, Bunno M (2016) A CO3-bearing member of the hydroxylapatite–hydroxylellestadite series from Tadano, Fukushima prefecture, Japan: CO3-SO4 substitution in the apatite–ellestadite series. Mineral Mag 80:363–370

    Article  Google Scholar 

  2. Brese NE, O’Keeffe M (1991) Bond-valence parameters for solids. Acta Crystallogr B47:192–197

    Article  Google Scholar 

  3. Bruker-AXS. APEX2 (2014) Version 2014.11–0. Bruker-AXS, Madison

    Google Scholar 

  4. Bruker-AXS Topas V4.2 (2009) General profile and structure analysis software for powder diffraction data. Karlsruhe, Germany

    Google Scholar 

  5. Chernorukov NG, Knyazev AV, Bulanov EN (2011) Phase transition and thermal expansion of apatite-structured compounds. Inorg Mater 47:172–177

    Article  Google Scholar 

  6. Chesnokov BV (1994) New minerals from burnt dumps of the Chelyabinsk coal basin. Report 6. Ural’skiy Mineralogicheskiy Sbornik 3:3–34 [in Russian]

    Google Scholar 

  7. Chesnokov BV (1995) High-temperature chlorsilicate mineralization in the burnt dumps of the Chelyabinsk coal basin. Dokl Akad Nauk 343(1):94–95 [in Russian]

    Google Scholar 

  8. Chesnokov BV (1997) New minerals from burnt dumps of the Chelyabinsk coal basin. Report 10: review of results over 1982–1996. Ural’skiy Mineralogicheskiy Sbornik 7:5–32 [in Russian]

    Google Scholar 

  9. Chesnokov BV (1999) Experience in technogenic mineralogy: 15 years on burnt dumps of underground and open-cast coal mines and concentrating plants of the south Urals. Ural’skiy Mineralogicheskiy Sbornik 9:138–167 [in Russian]

    Google Scholar 

  10. Chesnokov BV, Bazhenova LF, Bushmakin AF (1987с) Fluorellestadite Ca10[(SO4),(SiO4)]6F2 – a new mineral. Zap Vses Miner Obshchest 116: 743–746 [in Russian]

  11. Chesnokov BV, Shcherbakova EP (1991) Mineralogy of Burnt Dumps of the Chelyabinsk Coal Basin (An Experience in Technogenic Mineralogy) [in Russian]. Nauka, Moscow

  12. Chesnokov BV, Shcherbakova EP, Nishanbaev TP (2008) Minerals of burnt dumps of the Chelyabinsk coal basin. Ural branch of RAS, Miass [in Russian]

    Google Scholar 

  13. Chukanov NV (2014) Infrared spectra of mineral species. Volume 1. Springer Dordrecht Heidelberg New York London

  14. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann J (2009) OLEX2: a complete structure solution, refinement and analysis program. J Appl Crys 42:339–341

    Article  Google Scholar 

  15. Eytier C, Eytier JR, Favreau G, Devouard B, Vigier J (2004) Minéraux de Pyrométamorphisme de Lapanouse-de Sévérac (Aveyron). Cahier des Micromonteurs 85(3):3–58

    Google Scholar 

  16. Galuskin EV, Gfeller F, Armbruster T, Galuskina IO, Ye V, Dulski M, Murashko M, Dzierzanowski P, Sharygin VV, Krivovichev SV, Wirth R (2015b) Mayenite supergroup, part III: Fluormayenite, Ca12Al14O32[□4F2], and fluorkyuygenite, Ca12Al14O32[(H2O)4F2], two new minerals of mayenite supergroup from pyrometamorphic rock of Hatrurim complex, south Levant. Eur J Mineral 27(1):123–136

    Article  Google Scholar 

  17. Galuskin EV, Gfeller F, Armbruster T, Galuskina IO, Vapnik Y, Murashko M, Wlodyka R, Dzierżanowski P (2015a) New minerals with a modular structure derived from hatrurite from the pyrometamorphic Hatrurim complex. Part I. Nabimusaite, KCa12(SiO4)4(SO4)2O2F, from larnite rocks of Jabel Harmun, Palestinian autonomy, Israel. Mineral Mag 79:1061–1072

    Article  Google Scholar 

  18. Galuskina IO, Krüger B, Galuskin EV, Armbruster T, Gazeev VM, Włodyka R, Dulski M, Dzierżanowski P (2015) Fluorchegemite, Ca7(SiO4)3F2, a new mineral from the edgrewitebearing endoskarn zone of an altered xenolith in ignimbrites from upper Chegem caldera, northern Caucasus, Kabardina-balkaria, Russia; occurrence, crystal structure, and new data on the mineral assemblages. Can Mineral 53:325–344

    Article  Google Scholar 

  19. Galuskina IO, Vapnik Y, Lazic B, Armbruster T, Murashko M, Galuskin EV (2014) Harmunite CaFe2O4: a new mineral from the Jabel Harmun, West Bank, Palestinian autonomy, Israel. Am Mineral 99:965–975

    Article  Google Scholar 

  20. Harada K, Nagashima K, Kato A (1971) Hydroxyellestadite, a new apatite from Chichibu mine, Saitama prefecture, Japan. Am Mineral 56:1507–1518

    Google Scholar 

  21. Hughes JM, Rakovan J (2002) The crystal structure of apatite, Ca5(PO4)3(F,OH,Cl). Rev Mineral Geochem 48:1–12

    Article  Google Scholar 

  22. Khoury HN, Sokol EV, Kokh SN, Seryotkin YV, Kozmenko OA, Goryainov SV, Clark ID (2016) Intermediate members of the lime-monteponite solid solutions (Ca1–xCdxO, x = 0.36–0.55): discovery in natural occurrence. Am Mineral 101:146–161

    Article  Google Scholar 

  23. Kokh SN, Sokol EV, Sharigin VV (2015) Ellestadite-group minerals in combustion metamorphic rock. Coal Peat Fires: A Global Perspect 3:543–562

    Google Scholar 

  24. Langreiter T, Kahlenberg V (2015) TEV – a program for the thermal expansion tensor from diffraction data. Crystals 5:143–153

    Article  Google Scholar 

  25. Livingstone A, Ryback G, Fejer EE, Stanley CJ (1987) Mattheddleite, a new mineral of the apatite group from Leadhills, Strathclyde region, Scottish. J Geol 23:1–8

    Google Scholar 

  26. McConnell D (1937) The substitution of SiO4- and SO4-groups for PO4-groups in the apatite structure; ellestadite, the end-member. Am Mineral 22:977–986

    Google Scholar 

  27. Onac B, Effenberger H, Ettinger K, Panzaru S (2006) Hydroxyellestadite from Cioclavina cave (Romania): microanalytical, structural and vibrational spectroscopy data. Am Mineral 91:1927–1931

    Article  Google Scholar 

  28. Pajares I, De la Torre A, Martinez-Ramirez S, Puertas F, Blanco-Varela M, Aranda M (2002) Quantitative analysis of mineralized white Portland clinkers: the structure of Fluorellestadite. Powder Diffract 17:281–289

    Article  Google Scholar 

  29. Parafiniuk J, Hatert F (2020) New IMA CNMNC guidelines on combustion products from burning coal dumps. Eur J Mineral 32:215–217

    Article  Google Scholar 

  30. Pasero M, Kampf A, Ferraris C, Pekov I, Rakovan J, White T (2010) Nomenclature of the apatite supergroup minerals. Eur J Mineral 22:163–179

    Article  Google Scholar 

  31. Rouse RC, Dunn PJ (1982) A contribution to the crystal chemistry of ellestadite and silicate sulfate apatites. Am Mineral 67:90–96

    Google Scholar 

  32. Sejkora J, Houzar S, Srein V (1999) Clorem bohaty hydroxyellestadit ze Zastavky u Brno. Acta Musei Moraviae, Scientiae Geologicae 84:49–59

    Google Scholar 

  33. Sharygin VV, Sokol EV, Belakovskiy D (2015) Mineralogy and origin of fayalite–sekaninaite paralava: Ravat coal fire, Central Tajikistan coal and peat fires: a global perspective. Elsevier, Netherlands, pp 581–607

    Google Scholar 

  34. Sheldrick GM (2007) SADABS. University of Gӧettingen, Gӧettingen

    Google Scholar 

  35. Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Crystallogr C71:3–8

    Google Scholar 

  36. Środek D, Galuskina I, Dulski M, Ksiąźek M, Kusz J, Gazeev V (2018) Chlorellestadite Ca5(SiO4)1.5(SO4)1.5Cl, a new ellestadite group mineral from the Shadil-Khokh volcano, South Ossetia. Mineral Petrol 112:743–752

    Article  Google Scholar 

  37. Sokol EV, Nigmatulina EN, Volkova NI (2002) Fluorine mineralization from burning coal spoil-heaps in the Russian Urals. Mineral Petrol 75:23–40

    Article  Google Scholar 

  38. Sokol EV, Nigmatulina EN, Maksimova NV, Chiglintsev AJ (2005) CaC2O4*H2O spherulites in human kidney stones: morphology, chemical composition and growth regime. Eur J Mineral 17:285–295

    Article  Google Scholar 

  39. Sokol EV, Kokh SN, Ye V, Thiéry V, Korzhova SA (2014) Natural analogues of belite sulfoaluminate cement clinkers from Negev desert, Israel. Am Mineral 99:1471–1487

    Article  Google Scholar 

  40. Sokol EV, Kokh SN, Sharygin VV, Danilovsky VA, Seryotkin YV, Liferovich R, Deviatiiarova AS, Nigmatulina EN, Karmanov NS (2019) Mineralogical diversity of Ca2SiO4-bearing combustion metamorphic rocks in the Hatrurim Basin: implications for storage and partitioning of elements in oil shale clinkering. Minerals 9(8):465

    Article  Google Scholar 

  41. Zateeva SN, Sokol EV, Sharygin VV (2007) Specificity of pyrometamorphic minerals of the ellestadite group. Geol Ore Deposit 49:130–143

    Article  Google Scholar 

  42. Zolotarev AA, Krivovichev SV, Panikorovskii TL, Gurzhiy VV, Bocharov VN, Rassomakhin MA (2019) Dmisteinbergite, CaAl2Si2O8, a metastable polymorph of anorthite: crystal-structure and Raman spectroscopic study of the holotype specimen. Minerals 9:570

    Article  Google Scholar 

  43. Zolotarev AA, Zhitova ES, Krzhizhanovskaya MG, Rassomakhin MA, Shilovskikh VV, Krivovichev SV (2019b) Crystal chemistry and high-temperature behaviour of ammonium phases NH4MgCl3·6H2O and (NH4)2Fe3+Cl5·H2O from the burned dumps of the Chelyabinsk coal basin. Minerals 9 :486

Download references

Acknowledgments

The study was supported by the Russian Foundation for Basic Research (grant № 19-05-00628). The work of E. Sokol and S. Kokh was supported through the state assignment of Institute of Geology and Mineralogy SB RAS.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Margarita S. Avdontceva.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Editorial handling: H. Poellmann

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Avdontceva, M.S., Zolotarev, A.A., Krivovichev, S.V. et al. Fluorellestadite from burned coal dumps: crystal structure refinement, vibrational spectroscopy data and thermal behavior. Miner Petrol (2021). https://doi.org/10.1007/s00710-021-00740-4

Download citation

Keywords

  • Fluorellestadite
  • apatite supergroup
  • burned coal dumps
  • technogenic (anthropogenic) mineralogy
  • Chelyabinsk coal basin