Skip to main content
Log in

Origin of zircon-bearing mantle eclogites entrained in the V. Grib kimberlite (Arkhangelsk region, NW Russia): Evidence from mineral geochemistry and the U-Pb and Lu-Hf isotope compositions of zircon

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The concentrations of major and trace elements in minerals, reconstructed whole-rock compositions of zircon-bearing equigranular eclogites from the V. Grib kimberlite pipe located within the Arkhangelsk Diamondiferous Province (North-Western Russia), and results of the U-Pb and Lu-Hf isotope analyses of zircon grains from eclogites and granulite xenoliths are reported. These data suggest that the equigranular eclogites could represent the fragments of mid-ocean-ridge basalt that were metamorphosed during Paleoproterozoic subduction at 1.7–1.9 Ga. The Hf isotope compositions of the eclogitic zircon display uniformity and indicate corresponding Hf-depleted mantle model ages of 2.2–2.3 Ga. The formation of zircon in eclogites could have resulted from interactions with metasomatic/subduction-related fluids just prior to, but associated with, Paleoproterozoic eclogite formation. A link between eclogitic zircon formation and continental lower-crustal rocks can be excluded based on differences in the Hf isotope compositions of eclogitic and granulitic zircon grains. The U-Pb upper intercept age of granulitic zircon of 2716 ± 61 Ma provides a new minimum age constraint for zircon crystallisation and granulite formation. The U-Pb ages obtained from granulitic zircon show two stages of Pb loss at 2.2–2.6 Ga and 1.7–2.0 Ga. The late Paleoproterozoic stage of Pb loss recorded in granulitic zircon is due to the intensive reworking of basement crustal rocks, which was caused by a tectonic process/subduction event associated with equigranular eclogite formation. Our data, along with evidence previously obtained from the V. Grib pipe coarse-granular eclogites, show at least two main subduction events in the lithospheric mantle of the Arkhangelsk region: the Archean (2.8 Ga) and Paleoproterozoic (1.7–1.9 Ga) subductions, which correspond to major magmatic and metamorphic events in the Baltic Shield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aoki KI, Shiba I (1973) Pyroxenes from lherzolite inclusions of Itiome-gata, Japan. Lithos 6:41–51

    Article  Google Scholar 

  • Aulbach S, Viljoen KS (2015) Eclogite xenoliths from the Lace kimberlite, Kaapvaal craton: from convecting mantle source to palaeo-ocean floor and back. Earth Planet Sc Lett 431:274–286

    Article  Google Scholar 

  • Aulbach S, Stachel T, Viljoen KS, Brey GP, Harris JW (2002) Eclogitic and websteritic diamond sources beneath the Limpopo Belt—is slab-melting the link? Contrib Mineral Petr 143:56–70

    Article  Google Scholar 

  • Aulbach S, Gerdes A, Viljoen KS (2016) Formation of diamondiferous kyanite–eclogite in a subduction meґlange. Geochim Cosmochim Ac 179:156–176

    Article  Google Scholar 

  • Bach W, Alt JC, Niu Y, Humphris SE, Erzinger J, Dick HJB (2001) The geochemical consequences of late-stage low-grade alteration of lower ocean crust at the SW Indian Ridge: results from ODP Hole 735B (Leg 176). Geochim Cosmochim Ac 65:3267–3287

    Article  Google Scholar 

  • Beard AD, Downes H, Hegner E, Sablukov SM, Vetrin VR, Balogh K (1998) Mineralogy and geochemistry of Devonian ultramafic minor intrusions of the southern Kola Peninsula, Russia: implications for the petrogenesis of kimberlites and melilitites. Contrib Mineral Petr 130(3–4):288–303

    Article  Google Scholar 

  • Beard AD, Downes H, Hegner E, Sablukov SM (2000) Geochemistry and mineralogy of kimberlites from the Arkhangelsk Region, NW Russia: evidence for transitional kimberlite magma types. Lithos 51:47–73

    Article  Google Scholar 

  • Belousova EA, Griffin WL, Shee SR, Jackson SE, O’Reilly SY (2001) Two age populations of zircons from the Timber Creek Kimberlites, Northern Territory, as determined by laser-ablation ICPMS. Aust J Earth Sci 48:757–765

    Article  Google Scholar 

  • Bibikova EV, Bogdanova SV, Glebovitsky VA, Claesson S, Skio¨ld T (2004) Evolution of the Belomorian belt: NORDSIM UPb zircon dating of the Chupa paragneisses, magmatism, and metamorphic stages. Petrology 12:195–210

  • Bogatikov OA, Garanin VK, Kononova VA, Kudryavceva GP, Vasil’eva ER, Verzhak VV, Verichev EM, Parsadanyan KS, Posuhova TV (1999) Arkhangelsk diamondiferous province, Moscow State University, 521 pp (in Russian)

  • Boullier AM, Nicolas A (1975) Classification of textures and fabrics of peridotite xenoliths from South African kimberlites. Phys Chem Earth 9:467–475

    Article  Google Scholar 

  • Brey GP, Kohler T (1990) Geothermobarometry in four-phase lherzolites II. New thermobarometers and practical assessment of existing thermobarometers. J Petrol 31:1353–1378

    Article  Google Scholar 

  • Chen YD, O’Reilly SY, Kinny PD, Griffin WL (1994) Dating lower crust and upper mantle events: an ion microprobe study of xenoliths from kimberlitic pipes, South Australia. Lithos 32:77–94

    Article  Google Scholar 

  • De Stefano A, Kopylova MG, Cartigny P, Afanasiev VP (2009) Diamonds and eclogites of the Jericho kimberlite (Northern Canada). Contrib Mineral Petr 158:295–315

    Article  Google Scholar 

  • Ellis DJ, Green DH (1979) An experimental study of the effect of Ca upon garnet-clinopyroxene Fe–Mg exchange equilibria. Contrib Mineral Petr 71:13–22

    Article  Google Scholar 

  • Gillis KM, Snow JE, Klaus A, Abe N et al (2013) Primitive layered gabbros from fast-spreading lower oceanic crust. Nature 505:204–207

    Article  Google Scholar 

  • Glebovitskii VA, Baltybaev SK, Levchenkov OA, Kuzmina EV (2009) Thermodynamic regime of Svecofennian (1.9 Ga) metamorphism of the Umba nappe of the Lapland collisional orogen. Petrology 17:331–351

    Article  Google Scholar 

  • Godard M, Awaji S, Hansen H, Hellebrand E, Brunelli D, Johnson K, Yamasaki T, Maeda J, Abratis M, Christie D, Kato Y, Mariet C, Rosner M, (2009) Geochemistry of a long in-situ section of intrusive slow-spread oceanic lithosphere: Results from IODP Site U1309 (Atlantis Massif, 30°N Mid-Atlantic-Ridge). Earth and Planetary Science Letters 279 (1-2):110-122

  • Griffin WL, Pearson NJ, Belousova EA, Jackson SE, van Achterbergh E, O’Reilly SY, Shee SR (2000) The Hf isotope compositions of cratonic mantle: LAM-ICP-MS analysis of zircon megacrysts in kimberlites. Geochim Cosmochim Ac 64:133–147

    Article  Google Scholar 

  • Griffin WL, Belousova EA, Shee SR, Pearson NJ, O’Reilly SY (2004) Archean crustal evolution in the northern Yilgarn Craton: U-Pb and Lu-Hf-isotope evidence from detrital zircons. Precambrian Res 131:231–282

    Article  Google Scholar 

  • Grimes CB, John BE, Cheadle MJ, Mazdab FK, Wooden JL, Swapp S, Schwartz JJ (2009) On the occurrence, trace-element geochemistry, and crystallization history of zircon from in situ ocean lithosphere. Contrib Mineral Petr 158:757

    Article  Google Scholar 

  • Heaman LM, Creaser RA, Cookenboo HO (2002) Extremly enrichment of high field strength elements in Jericho eclogite xenoliths: A cryptic record of Paleoproterozoic subduction, partial melting, and metasomatism beneath the Slave craton, Canada. Geology 30(6):507–510

    Article  Google Scholar 

  • Heaman LM, Creaser RA, Cookenboo HO, Chacko T (2006) Multi-stage modifcation of the Northern slave mantle lithosphere: evidence from zircon-and diamond-bearing eclogite xenoliths entrained in Jericho kimberlite. Canada J Pet 47:821–858

    Article  Google Scholar 

  • Hinton RW, Upton BGJ (1991) The chemistry of zircon: variations within and between large crystals from syenite and alkali basalt xenoliths. Geochim Cosmochim Ac 55:3287–3302

    Article  Google Scholar 

  • Hoffman AW (1988) Chemical differentiation of the earth: the relationship between mantle, continental crust and oceanic crust. Earth Planet Sc Lett 90:297–314

    Article  Google Scholar 

  • Hoskin PWO, Schaltegger U (2003) The composition of zircon and igneous and metamorphic petrogenesis. Geochim Cosmochim Ac 53:27–62

    Google Scholar 

  • Jackson SE, Pearson NJ, Griffin WL, Belousova EA (2004) The application of laser ablation microprobe-inductively coupled plasma-mass spectrometry (LAM-ICP-MS) to in-situ U-Pb zircon geochronology. Chem Geol 211:47–69

    Article  Google Scholar 

  • Jacob DE (2004) Nature and origin of eclogite xenoliths from kimberlites. Lithos 77(1–4):295–316

    Article  Google Scholar 

  • Kaczmarek MA, Muntener O, Rubatto D (2008) Trace-element chemistry and U-Pb dating of zircons from oceanic gabbros and their relationship with whole-rock composition (Lanzo, Italian Alps). Contrib Mineral Petr 155(3):295–312

    Article  Google Scholar 

  • Kargin AV, Sazonova LV, Nosova AA, Tretyachenko VV (2016) Composition of garnet and clinopyroxene in peridotite xenoliths from the Grib kimberlite pipe, Arkhangelsk diamond province, Russia: evidence for mantle metasomatism associated with kimberlite melts. Lithos 262:442–455

    Article  Google Scholar 

  • Kargin AV, Sazonova LV, Nosova AA, Pervov VA, Minevrina EV, Khvostikov VA, Burmii ZP (2017) Sheared peridotite xenolith from the V. Grib kimberlite pipe, Arkhangelsk Diamond Province, Russia: texture, composition, and origin. Geosci Front 8:653–669

    Article  Google Scholar 

  • Kinny PD, Compston W, Bristow JW, Williams IS (1989) Archean mantle xenocrysts in a Permian kimberlite: two generations of kimberlitic zircon in Jwaneng DK2, southern Botswana. In: Ross J (ed) Kimberlites and related rocks: their mantle/crustal setting, diamonds and diamond exploration. Proceedings of the Fourth International Kimberlite Conference, vol 2. Geological Society of Australia Special Publication vol 14, pp 833–842

  • Kononova VA, Golubeva YY, Bogatikov OA, Kargin AV (2007) Diamond resource potential of kimberlites from the Zimny Beregfield, Arkhangel'sk oblast. Geol Ore Deposit 49:421–441

    Article  Google Scholar 

  • Koreshkova MY, Downes H, Glebovitsky VA, Rodionov NV, Antonov AV, Sergeev SA (2014) Zircon trace element characteristics and ages in granulite xenoliths; a key to understanding the age and origin of the lower crust, Arkhangelsk kimberlite province, Russia. Contrib Mineral Petr 167:973

    Article  Google Scholar 

  • Kostrovitsky SI, Malkovets VG, Verichev EM, Garanin VK, Suvorova LV (2004) Megacrysts from the Grib kimberlite pipe (Arkhangelsk Province, Russia). Lithos 77:511–523

    Article  Google Scholar 

  • Kresten P, Fels P, Berggren G (1975) Kimberlitic zircons – a possible aid in prospecting for kimberlites. Mineral Deposita 10:47–56

    Article  Google Scholar 

  • Lavrent’ev YG, Korolyuk VN, Usova LV, Nigmatulina EN (2015) Electron probe microanalysis of rock-forming minerals with a JXA-8100 electron probe microanalyzer. Russ Geol Geophys 56:1428–1436

    Article  Google Scholar 

  • Le Roux PS, le Roux AP, Schilling JG (2002) Crystallization processes beneath the southern Mid-Atlantic Ridge (40 – 55 ° S), evidence for high-pressure initiation of crystallization. Contrib Mineral Petr 142:582–602

    Article  Google Scholar 

  • Ludwig KR (1992) ISOPLOT – a plotting and regression program for radiogenic isotope data, version 2.57. US Geological Survey Open-File Report 91:445

    Google Scholar 

  • MacGregor ID, Manton WI (1986) Roberts Victor eclogites: ancient oceanic crust. J Geophys Res 91(B14):14063–14079

    Article  Google Scholar 

  • Mahotkin IL, Gibson SA, Thompson RN, Zhuravlev DZ, Zherdev PU (2000) Late Devonian diamondiferous kimberlite and alkaline picrite (proto-kimberlite?) magmatism in the Arkhangelsk region, Russia. J Petrol 41(2):201–227

    Article  Google Scholar 

  • McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • Mints MV, Dokukina KA, Konilov AN (2014) The Meso-Neoarchaean Belomorian eclogite province: Tectonic position and geodynamic evolution. Gondwana Res 25:561–584

    Article  Google Scholar 

  • Nikitina LP, Korolev NM, Zinchenko VN, Felix JT (2014) Eclogites from the upper mantle beneath the Kasai Craton (Western Africa): Petrography, whole-rock geochemistry and U-Pb zircon age. Precambrian Res 249:13–32

    Article  Google Scholar 

  • Norman MD, Pearson NJ, Sharma A, Griffin WL (1996) Quantitative analysis of trace-elements in geological materials by laser ablation ICPMS: instrumental operating conditions and calibration values of NIST glasses. Geostand Newslett 20:247–261

    Article  Google Scholar 

  • Nowell GM, Kempton PD, Noble SR, Fitton JG, Saunders AD, Mahoney JJ, Taylor RN (1998) High precision Hf isotope measurements of MORB and OIB by thermal ionization mass spectrometry:insighs into the depleted mantle. Chem Geol 149:211–233

    Article  Google Scholar 

  • O’Brien H, Bradley J (2008) New kimberlite discoveries in Kuusamo, northern Finland. Extended Abstracts of the 9th International Kimberlite Conference, 9IKC–A–00346

  • O’Brien HE, Peltonen P, Vartiainen H (2005) Kimberlites, carbonatites and alkaline rocks. In: Lehtninen M, Nurmi PA, Rämö OT (eds) Precambrian geology of Finland. Elsevier, Amsterdam, pp 605–644

    Chapter  Google Scholar 

  • O’Brien H, Phillips D, Spencer R (2007) Isotopic ages of Lenti-ira-Kuhmo-Kostomuksha olivine lamproite-Group II kimber-lites. B Geol Soc Finland 79:203–215

    Article  Google Scholar 

  • O'Hara MJ, Yoder HS (1967) Formation and fractionation of basic magmas at high pressures. Scott J Geol 3:67–117

    Article  Google Scholar 

  • Parsadanyan KS, Kononova VA, Bogatikov OA (1996) The sources of heterogeneous magmatism in the Arkhangelsk diamondiferous province. Petrologiya 4(5):496–517

    Google Scholar 

  • Pernet-Fisher JF, Howarth GH, Liu Y, Barry PH, Carmody L, Valley JW, Bodnar RJ, Spetsius ZV, Taylor LA (2014) Komsomolskaya diamondiferous eclogites: evidence for oceanic crustal protoliths. Contrib Mineral Petr 167:981

    Article  Google Scholar 

  • Polat A, Frei R, Appel PWU, Dilek Y, Fryer B, Ordonez-Calderon JC, Yang Z (2008) The origin and compositions of Mesoarchean oceanic crust: Evidence from the 3075 Ma Ivisaartoq greenstone belt, SW Greenland. Lithos 100:293–321

    Article  Google Scholar 

  • Priyatkina N, Khudoley AK, Ustinov VN, Kullerud K (2014) 1.92 Ga kimberlitic rocks from Kimozero, NW Russia: Their geochemistry, tectonic setting and unusual field occurrence. Precambrian Res 249:162–179

    Article  Google Scholar 

  • Rubatto D (2002) Zircon trace element geochemistry: partitioning with garnet and the link between U-Pb ages and metamorphism. Chem Geol 184:123–138

    Article  Google Scholar 

  • Rudnick RL, Ireland TR, Gehrels G, Irving AJ, Chesley JT, Hanchar JM (1999) Dating mantle metasomatism: U-Pb geochronology of zircons in cratonic mantle xenoliths from Montana and Tanzania. In: Gurney JJ, Gurney JL, Pascoe MD, Richardson SH (eds) The P.H. Nixon Volume, Proceedings of the VIIth International Kimberlite Conference. Red Roof Design, pp 728–735

  • Samsonov AV, Nosova AA, Tretyachenko VV, Larchenko VA, Larionova YO (2009) Collisional Sutures in the Early Precambrian Crust as a Factor Responsible for Localization of Diamondiferous Kimberlites in the Northern East European Platform. Dokl Earth Sci 425(2):226–230

    Article  Google Scholar 

  • Scherer E, Munker C, Mezger K (2001) Calibration of the lutetium-hafnium clock. Science 293:683–687

    Article  Google Scholar 

  • Schmickler B, Jacob DE, Foley SF (2004) Eclogite xenoliths from the Kuruman kimberlites, South Africa: geochemical fingerprinting of deep subduction and cumulate processes. Lithos 75:173–207

    Article  Google Scholar 

  • Schmidberger SS, Heaman LM, Simonetti A, Creaser RA, Cookenboo HO (2005) Formation of Paleoproterozoic eclogitic mantle, Slave Province (Canada): Insights from in-situ Hf and U-Pb isotopic analyses of mantle zircons. Earth Planet Sc Lett 240:621–633

    Article  Google Scholar 

  • Schmitz M, Shirey S, Carlson R (2003) High-precision U-Pb geochronology and Lu-Hf isotopic systematics of zircons in southern African cratonic mantle eclogites and implications for subcontinental lithospheric mantle evolution and metaqsomatism. Extended Abstracts, 8th International Kimberlite Conference, Victoria, B.C., 1 p

  • Shchukina EV, Golovin NN, Malkovets VG, Pokhilenko NP (2012) Mineralogy and equilibrium P-T estimates for peridotite assemblages from the V. Grib kimberlite pipe (Arkhangelsk Kimberlite Province). Dokl Earth Sci 444(2):776–781

    Article  Google Scholar 

  • Shchukina EV, Agashev AM, Golovin NN, Pokhilenko NP (2015a) Equigranular Eclogites from the V. Grib Kimberlite Pipe: Evidence for Paleoproterozoic Subduction on the Territory of the Arkhangelsk Diamondiferous Province. Dokl Earth Sci 462(1):497–501

    Article  Google Scholar 

  • Shchukina EV, Agashev AM, Kostrovitsky SI, Pokhilenko NP (2015b) Metasomatic processes in the lithospheric mantle beneath the V. Grib kimberlite pipe (Arkhangelsk diamondiferous province). Russ Geol Geophys 56(12):1701–1716

    Article  Google Scholar 

  • Shchukina EV, Agashev AM, Pokhilenko NP (2017a) Metasomatic origin of garnet xenocrysts from the V. Grib kimberlite pipe, Arkhangelsk region, NW Russia. Geosci Front 8:641–651

    Article  Google Scholar 

  • Shchukina EV, Agashev AM, Soloshenko NG, Streletskaya MV, Zedgenizov DA, Shchukin VS, Pokhilenko NP (2017b) Origin of coarse-granular and equigranular eclogites from V. Grib kimberlite pipe, Arkhangelsk region, NW Russia. 11-th International Kimberlite conference, Extended Abstracts No. 11IKC-4456

  • Shevchenko SS, Lokhov KI, Sergeev SA (2004) Isotope studies in VSEGEI. Prospects of application of results for predicting and search of diamond deposits. In: Proceedings of Scientific Practical Conference on Efficiency of Prediction and Search for Diamond Deposits: Past, Present, and Future, St. Petersburg, pp 383–387

  • Smart KA, Heaman LM, Chacko T, Simonetti A, Kopylova M, Mah D, Daniels D (2009) The origin of high-MgO diamond eclogites from the Jericho Kimberlite. Canada. Earth Planet Sc Lett 284:527–537

    Article  Google Scholar 

  • Smart KA, Chacko T, Simonetti A, Sharp ZD, Heaman LM (2014) Record of Paleoproterozoic Subduction Preserved in the Northern Slave Cratonic Mantle: Sr–Pb–O Isotope and Trace-element Investigations of Eclogite Xenoliths from the Jericho and Muskox Kimberlites. J Petrol 55(3):549–583

    Article  Google Scholar 

  • Smit KV, Shor R (2017) Geology and development of the Lomonosov diamond deposit, Northwestern Russia. Gems Gemol 53(2):144–167

    Google Scholar 

  • Smit KV, Stachel T, Creaser RA, Ickert RB, DuFrane SA, Stern SA, Seller M (2014) Origin of eclogite and pyroxenite xenoliths from the Victor kimberlite, Canada, and implications for Superior craton formation. Geochim Cosmochim Ac 125:308–337

    Article  Google Scholar 

  • Smyth JR, Caporuscio FA, McCormick T (1989) Mantle eclogites: evidence of igneous fractionation in the mantle. Earth Planet Sc Lett 93:133–141

    Article  Google Scholar 

  • Taylor LA, Neal CR (1989) Eclogites with oceanic crustal and mantle signatures from the Bellsbank kimberlite, South Africa, Part I: mineralogy, petrography, and whole rock chemistry. J Geol 97:551–567

    Article  Google Scholar 

  • Taylor LA, Snyder GA, Keller R, Remley DA, Anand M, Wiesli R, Valley J, Sobolev NV (2003) Petrogenesis of group A eclogites and websterites; evidence from the Obnazhennaya Kimberlite, Yakutia. Contrib Mineral Petr 145(4):424–443

    Article  Google Scholar 

  • Watson EB, Wark DA, Thomas JB (2006) Crystallisation thermometers for zircon and rutile. Contrib Mineral Petr 151:413–433

    Article  Google Scholar 

  • Zhao G, Cawood PA, Wilde SA, Sun M (2002) Review of global 2.1 – 1.8 Ga orogens: implications for a pre – Rodinia supercontinent. Earth-Sci Rev 59(1–4):125–162

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Vladimir N. Korolyuk, Larisa V. Usova, and Stanislav V. Palessky (Analytical Centre for multi-element and isotope research Institute Geology and Mineralogy Siberian Branch Russian Academy of Science) for their kind assistance in EMPA and LA-ICP-MS analyses, Sergey G. Simakin (Yaroslavl Branch of the Physical–Technological Institute of Russian Academy of Science) for zircon SIMS study, Elena A. Belousova (GEMOC Key Centre, Macquarie University, Australia) for zircon LA-ICP-MS U-Pb and Lu-Hf isotope analyses. This manuscript has benefited from the helpful comments of Thomas Stachel, reviewer Qiao Shu, an anonymous reviewer, and editor Jingao Liu. This work was supported by the Russian Science Foundation under grant no. 16-17-10067.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena V. Shchukina.

Additional information

Editorial handling: J. Liu

Electronic supplementary material

ESM 1

(XLSX 91 kb)

ESM 2

(XLSX 30 kb)

ESM 3

(XLSX 1138 kb)

ESM 4

(XLSX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shchukina, E.V., Agashev, A.M. & Zedgenizov, D.A. Origin of zircon-bearing mantle eclogites entrained in the V. Grib kimberlite (Arkhangelsk region, NW Russia): Evidence from mineral geochemistry and the U-Pb and Lu-Hf isotope compositions of zircon. Miner Petrol 112 (Suppl 1), 85–100 (2018). https://doi.org/10.1007/s00710-018-0581-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-018-0581-z

Keywords

Navigation