Advertisement

Mineralogy and Petrology

, Volume 112, Issue 5, pp 633–645 | Cite as

Genetic significance of the 867 cm− 1 out-of-plane Raman mode in graphite associated with V-bearing green grossular

  • Rainer Thomas
  • Adolf Rericha
  • Walter L. Pohl
  • Paul Davidson
Original Paper

Abstract

SE Kenya is the world’s largest producer of green vanadium grossular gemstones (tsavorite). Samples from one of the mines near Mwatate, and of occurrences in Tanzania yielded remarkable new insights into the genesis of tsavorite. Graphite is intimately associated with V-grossular and is one of the keys to understanding its origin. In the course of this study we found five different types of graphite. Surprisingly, in one graphite type the “Raman-forbidden” and IR-active 867 cm− 1 band was observed. In this communication, we attempt to find an explanation for this unusual phenomenon. Additionally, our observations also address some of the issues pertaining to the origin of the green grossular-dominated rocks (grossularites), as well as the gem quality tsavorite crystals, since we propose that the anomalous spectroscopic behavior of the graphite is related to the unusual conditions during crystallization of both the grossular and graphite from a near-supercritical volatile- and sulfur-rich silicate melt. The massive green vanadium grossular contains abundant unequivocal crystallized melt inclusions, while the transparent gem quality grossular (tsavorite) displays only fluid inclusions. On the basis of inclusion studies we suggest that anatectic melts originated in the peculiar evaporitic host lithology of the tsavorite deposits. Near peak metamorphic temperatures (~ 700 °C) these liquids occurred as a supercritical volatile-rich “fluid/melt phase” characterized by complete miscibility between H2O and silicate liquid. Relatively dry liquid batches precipitated non-transparent green grossular, whereas wet batches segregated fluids that formed transparent tsavorite.

Keywords

Tsavorite Green V-grossular Graphite Raman scattering Fluid and melt inclusions Sulfur 

Notes

Acknowledgements

The authors thank Patrick Arkfeld from the Arkfeld Minerals (Carlsbad, California, USA) for providing the tsavorite crystals from Tanzania, and the management of Scorpion mine, Kenya, for cobbing waste. We thank Elena Badanina and Hans-Peter Nabein for the handling of the rapid quench experiments at GeoForschungsZentrum Potsdam. We also wish to thank Vratislav Hurai and Reinhard Kaindl for their helpful and constructive reviews, and Anton Beran as well as Lutz Nasdala for valuable suggestions. Our thanks also to Bob Downs for useful information regarding Raman spectra of lanthanite-(Nd) in the RUFF database.

Supplementary material

710_2018_563_MOESM1_ESM.pdf (627 kb)
Supplementary material 1 (PDF 626 KB)

References

  1. Arneth JD, Schidlowski M, Sarbas B, Georg U, Amstutz GC (1985) Graphite content and isotopic fractionation between calcite–graphite pairs in metasediments from the Mgama Hills, Southern Kenya. Geochim Cosmochim Acta 49:1553–1560CrossRefGoogle Scholar
  2. Beyssac O, Lazzeri M (2012) Application of raman spectroscopy to the study of graphitic carbons in the earth sciences. EMU Notes Mineral 12:415–454. Chapter 12Google Scholar
  3. Beyssac O, Coffé B, Chopin C, Rouzaud JN (2002) Raman spectra of carbonaceous material in metasediments: a new geothermometer. J Metamorph Geol 20:859–871CrossRefGoogle Scholar
  4. Borisenko AS (1977) Cryometric technique applied to studies of the saline composition of solution in gaseous fluid inclusions in minerals. Geol Geofiz AN SSSR SO 8:16–27. (in Russian)Google Scholar
  5. Bridges B, Walker J (2014) The discoverer of tsavorite – Campbell Bridges – and his Scorpion mine. J Gemmol 34:230–241CrossRefGoogle Scholar
  6. Cahen L, Snelling NJ, Delhal J, Vail JR (1984) The geochronology and evolution of Africa. Clarendon, OxfordGoogle Scholar
  7. Chen H, Stimets RW (2014) Fluorescence of trivalent neodymium in various materials excited by a 785 nm laser. Am Mineral 99:332–342CrossRefGoogle Scholar
  8. Dresselhaus MS, Dresselhaus G, Eklund PC, Chung DDL (1977) Lattice vibrations in graphite and intercalation compounds of graphite. Mater Sci Eng 31:141–152CrossRefGoogle Scholar
  9. Fehér F, Laue W, Winkhaus G (1956) Über die Darstellung der Sulfane H2S2, H2S3, H2S4 und H2S5. Z Anorg Allg Chem 288:113–122CrossRefGoogle Scholar
  10. Feneyrol J, Giuliani G, Ohnenstetter D, Le Goff E, Malisa EPJ, Saul M, Saul E, Saul J, Pardieu V (2010) Lithostratigraphic and structural controls of ‘tsavorite’ deposits at Lemshuku, Merelani area, Tanzania. C R Geosci 342:778–785CrossRefGoogle Scholar
  11. Feneyrol J, Giuliani G, Ohnenstetter D, Fallick AE, Martelat JE, Monié P, Dubessy J, Rollion-Bard C, Le Goff E, Malisa E, Rakotondrazafy AFM, Pardieu V, Kahn T, Ichang D, Venace E, Voarintsoa NR, Ranatsenho MM, Simonet C, Omito E, Nyamai C, Saul M (2013) New aspects and perspectives on tsavorite deposits. Ore Geol Rev 53:1–25CrossRefGoogle Scholar
  12. Feneyrol J, Giuliani G, Demaiffe D, Ohnenstetter D, Fallick AE, Dubessy J, Martelat J-E, Rakotondrazafy AFM, Omito E, Ichang’i D, Nyamai C, Wamunyu AW (2017) Age and origin of the tsavorite and tanzanite mineralizing fluids in the Neoproterozoic Mozambique Metamorphic Belt. Can Mineral 55:763–786CrossRefGoogle Scholar
  13. Fritz H, Abdelsalam M, Ali KA, Bingen B, Collins AS, Fowler AR, Ghebreab W, Hauzenberger CA, Johnson PR, Kusky TM, Macey P, Muhongo S, Stern RJ, Viola G (2013) Orogen styles in the East African Orogen: a review of the Neoproterozoic to Cambrian tectonic evolution. J Afr Earth Sci 86:65–106CrossRefGoogle Scholar
  14. Frost RL, López A, Scholz R, Xi Y, Belotti M (2013) Infrared and Raman spectroscopic characterization of the carbonate mineral huanghoite - And in comparison with selected rare earth carbonates. J Mol Struct 1051:221–225CrossRefGoogle Scholar
  15. Giuliani G, Dubessy J, Ohnenstetter D, Banks D, Feneyrol J, Branquet Y, Fallick AE (2015) Le fluide, l’Arlésienne du métamorphisme. Géochronique 136:65–69Google Scholar
  16. Giuliani G, Dubessy J, Ohnenstetter D, Banks D, Branquet Y, Feneyrol J, Fallick AE (2018) The role of evaporites in the formation of gems during metamorphism of carbonate platforms: a review. Miner Deposita 53:1–20CrossRefGoogle Scholar
  17. Gmelin L (1983) Gmelin handbook of inorganic chemistry, System No. 9, Supplement vol 4a/b, Springer-VerlagGoogle Scholar
  18. Gorbaty YE, Bondarenko GV (1998) The physical state of supercritical fluids. J Supercrit Fluid 14:1–8CrossRefGoogle Scholar
  19. Hurai V, Huraiová M, Slobodník M, Thomas R (2015) Geofluids. ElsevierGoogle Scholar
  20. Hurai V, Paquette J-L, Huraiová M, Slobodník M, Hvoždara P, Siegfried P, Gajdošová M, Milovská S (2017) New insights into the origin of the Evate apatite-iron oxide-carbonate deposit, Northeastern Mozambique, constrained by mineralogy, textures, thermochronometry, and fluid inclusions. Ore Geol Rev 80:1072–1091CrossRefGoogle Scholar
  21. Kawashima Y, Katagiri G (1999) Observation of the out-of-plane mode in the Raman scattering from the graphite edge plane. Phys Rev B 59:62–64CrossRefGoogle Scholar
  22. Kawashima Y, Katagiri G (2002) Evidence for nonplanar atomic arrangement in graphite obtained by Raman spectroscopy. Phys Rev B 66(10):104109Google Scholar
  23. Lafuente B, Downs RT, Yang H, Stone N (2015) The power of databases: the RRUFF project. In: Armbruster T, Danisi RM (eds) Highlights in mineralogical crystallography. W De Gruyter, p 1–30Google Scholar
  24. Luque FJ, Huizenga J-M, Crespo-Feo E, Wada H, Ortega L, Barrenechea JF (2014) Vein graphite deposits: geological settings, origin, and economic significance. Miner Deposita 49:261–277CrossRefGoogle Scholar
  25. Makarov SZ (1933) Löslichkeitsisothermen und Eisfeld im ternären System Na2CO3-NaCl-H2O. Z für Allg Chem III 2: 234–248. (in Russian)Google Scholar
  26. Martelat J-E, Paquette J-L, Bosse V, Giuliani G, Monie P, Omito E, Simonet C, Ohnenstetter D, Ichang’i D, Nyamai C, Wamunyu A (2017) Chronological constraints on tsavorite mineralizations and related metamorphic episodes in Southeast Kenya. Can Mineral 55:845–865CrossRefGoogle Scholar
  27. Naumov VB, Kamenetsky VS, Thomas R, Kononkova NN, Ryzhenko BN (2008) Inclusions of silicate and sulfate melts in chrome diopside from the Inagli deposit, Yakutia, Russia. Geochem Int 46:554–564CrossRefGoogle Scholar
  28. Nemanich RJ, Lucovsky G, Solin SA (1977) Infrared active optical vibrations of graphite. Solid State Commun 23:117–120CrossRefGoogle Scholar
  29. Nývlt J (1977) Solid-liquid equilibria. Elsevier, AmsterdamGoogle Scholar
  30. Oliver BG, Davis AR (1973) Vibrational spectroscopic studies of aqueous alkali metal bicarbonate und carbonate solutions. Can J Chem 51:698–702CrossRefGoogle Scholar
  31. Pawley M, Reid A, Dutch R, Preiss W (2015) Demystifying migmatites: an introduction for the field-based geologist. Appl Earth Sci 124:147–174CrossRefGoogle Scholar
  32. Pohl WL, Horkel A (1980) Notes on the geology and mineral resources of the Mtito Andei-Taita area (Southern Kenya). Mitt Österr Geogr G 73:135–152Google Scholar
  33. Pohl WL, Nauta WJ, Niedermayr G (1979) Geology of the Mwatate Quadrangle and the Vanadium Grossularite Deposits of the Area (with a Geological Map 1:50,000). Kenya Geol Survey Report No. 101, Nairobi. https://www.researchgate.net/profile/Walter_Pohl
  34. Rankin AH, Taylor D, Treolar PJ (2013) Liquid hydrogen sulphide (H2S) fluid inclusions in unheated tanzanites (zoisite) from Merelani, Tanzania: part 2. influence on gem integrity during and after heat treatment. J Gemmol 33:161–167CrossRefGoogle Scholar
  35. Reich S, Thomsen C (2004) Raman spectroscopy of graphite. Philos Trans R Soc A 362:2271–2288CrossRefGoogle Scholar
  36. Shen AH, Keppler H (1997) Direct observation of complete miscibility in the albite-H2O system. Nature 385:710–712CrossRefGoogle Scholar
  37. Shikin AM, Adamchuk VK, Siebentritt S, Rieder K-H, Molodtsov SL, Laubschat C (2000) Formation of surface graphite monolayer and intercalation like compound in the La/graphite system under thermal annealing. Phys Rev B 61:7752–7759CrossRefGoogle Scholar
  38. Suwa K, Suzuki K, Miyakawa K, Agata T (1996) Vanadium grossular from the Mozambique metamorphic rocks, south Kenya. J SE Asian Earth 14:299–308CrossRefGoogle Scholar
  39. Tenczer V, Hauzenberger CA, Fritz H, Hoinkes G, Muhongo S, Klötzli U (2011) The P–T–X (fluid) evolution of meta-anorthosites in the Eastern Granulites, Tanzania. J Metamorph Geol 29:537–560CrossRefGoogle Scholar
  40. Tenczer V, Hauzenberger CA, Fritz H, Hoinkes G, Muhongo S, Kloetzli U (2013) Crustal age domains and metamorphic reworking of the deep crust in Northern-Central Tanzania: a U/Pb zircon and monazite age study. Miner Petrol 107:679–707CrossRefGoogle Scholar
  41. Thomas R, Davidson P (2012) The application of Raman spectroscopy in the study of fluid and melt inclusions. Z Dtsch Ges Geowiss 163/2:113–126Google Scholar
  42. Thomas R, Davidson P (2016) Revisiting complete miscibility between silicate melts and hydrous fluids, and the extreme enrichment of some elements in the supercritical state — consequences for the formation of pegmatites and ore deposits. Ore Geol Rev 72:1088–1101CrossRefGoogle Scholar
  43. Thomas R, Davidson P (2017) Hingganite-(Y) from a small aplite vein in granodiorite from Oppach, Lusatian Mts, E-Germany. Miner Petrol 111:821–826CrossRefGoogle Scholar
  44. USGS (2015a) Kenya, Minerals Yearbook 2013. URL https://minerals.usgs.gov/minerals/pubs/country/africa.html#ke
  45. USGS (2015b) Tanzania, Minerals Yearbook 2013. URL https://minerals.usgs.gov/minerals/pubs/country/africa.html#tz
  46. Veksler IV, Thomas R (2002) An experimental study of B-, P- and F-rich synthetic granite pegmatite at 0.1 and 0.2 GPa. Contrib Mineral Petr 143:673–683CrossRefGoogle Scholar
  47. Warren JK (2006) Sabkhas, saline mudflats and pans. In: Warren, JK (ed) Evaporites: sediments, resources and hydrocarbons. Springer Berlin – Heidelberg, Chapter 3, p 139–220Google Scholar
  48. White RW, Powell R, Halpin JA (2004) Spatially-focused melt formation in aluminous metapelites from Broken Hill, Australia. J Metamorph Geol 22:825–845CrossRefGoogle Scholar
  49. Yang H-P, Wen H-H, Zhao Z-W, Li S-L (2001) Possible superconductivity at 37 K in graphite-sulphur composite. Chin Phys Lett 18:1648–1650CrossRefGoogle Scholar
  50. Zhang R, Lehmann B, Seltmann R, Sun W, Li C (2017) Cassiterite U-Pb geochronology constrains magmatic-hydrothermal evolution in complex evolved granite systems: the classic Erzgebirge tin province (Saxony and Bohemia). Geology 45:1095–1098CrossRefGoogle Scholar
  51. Zheng S, Wen Y, Zhu Y, Han Z, Wang J, Yang J, Wang C (2014) In situ sulfur reduction and intercalation of graphite oxides for Li-S battery cathodes. Adv Energy Mater 1400482:1–9Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Helmholtz-Centre Potsdam, German Research Centre for Geoscience – GFZ, Section 4.3.Chemistry and Physics of Earth MaterialsPotsdamGermany
  2. 2.FalkenseeGermany
  3. 3.Austrian Academy of SciencesViennaAustria
  4. 4.CODES, Centre for Ore Deposit and Earth ScienceUniversity of TasmaniaHobartAustralia

Personalised recommendations