Skip to main content
Log in

Petrology and geochemistry of the high-Cr podiform chromitites of the Köycegiz ophiolite, southwest Turkey: implications for the multi-stage evolution of the oceanic upper mantle

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Ophiolites exposed across the western Tauride belt in Turkey represent tectonically emplaced fragments of oceanic lithosphere obducted onto the continental margin following the closure of the Neotethys Ocean during the Late Cretaceous. The ultramafic massif of Köycegiz, which is located in the ophiolitic belt of southwestern Turkey, is a major source of metallurgical chromitite ore. The massif comprises a base of tectonized harzburgite with minor dunite overlain by a magmatic sequence of wehrlite, pyroxenite, troctolite and gabbro. Only sparse refractory chromitites occur within the harzburgites; in contrast, the upper and middle sections of the peridotite sequence contain abundant metallurgical chromitites. The peridotites record abundant evidence of mantle metasomatism on various scales, as the Fo values of olivine in harzburgite are 90.1–95.4, whereas those in dunite are 90.1–91.8. The compositions of the melts passing through the peridotites changed gradually from arc tholeiite to boninite due to melt-rock reactions, thus producing more Cr-rich chromitites in the upper part of the body. Most of the chromitites have high Cr numbers (77–78), although systematic changes in the compositions of the olivine and chromian spinel occur from the harzburgites to the dunite envelopes to the chromitites, reflecting melt-rock reactions. The calculated ∆logfO2 (FMQ) values range from − 2.77 to + 1.03 in the chromitites, − 2.73 to -0.01 in the harzburgites, and − 1.65 to + 0.45 in the dunites. All of the available evidence suggests that the Köycegiz ophiolite formed in a supra-subduction zone (SSZ) mantle wedge. These models indicate that the harzburgites represent the products of first-stage melting and low degrees of melt–rock interaction that occurred in a mid-ocean ridge (MOR) environment. In contrast, the chromitites and dunites represent the products of second-stage melting and related refertilization, which occurred in an SSZ environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

(modified from Dilek and Furnes 2009). Neo-Tethyan ophiolites range in age from Jurassic in the Alps and the Balkan Peninsula to Late Jurassic-Cretaceous in the eastern Mediterranean region (mainly in Anatolia and farther east) and are associated with ocean floor sediments and flysch deposits. The Pelagonian continental fragment in the Balkan Peninsula separates the partly coeval Pindos-Mirdita (west) and the Vardar Zone (east) ophiolite belts

Fig. 2

(modified from Okay et al. 2001). Distribution of Neotethyan ophiolites in the EasternMediterranean region are shown as inset (Dilek et al. 2007). Key to abbreviations: IASZ = Izmir–Ankara Suture Zone; BZSZ = Bitlis–Zagros Suture Zone

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ahmed A, Arai S (2002) Unexpectedly high-PGE chromitite from the deeper mantle section of the northern Oman ophiolite and its tectonic implications. Contrib Mineral Petrol 143:263–278

    Article  Google Scholar 

  • Ahmed AH, Arai S, Attia AK (2001) Petrological characteristics of podiform chromitites and associated peridotites of the Pan African Proterozoic ophiolite complexes of Egypt. Miner Deposita 36:72–84

    Article  Google Scholar 

  • Aldanmaz E (2012) Trace element geochemistry of primary mantle minerals in spinel peridotites from polygenetic MOR-SSZ suites of SW Turkey: constraints from an LAICP-MS study and implications for mantle metasomatism. Geol J 47:59–76

    Article  Google Scholar 

  • Aldanmaz E, Schmidt M, Gourgaud A, Meisel T (2009) Mid-ocean ridge and supra-subduction geochemical signatures in spinel–peridotites from the Neotethyan ophiolites in SW Turkey: implications for upper mantle melting processes. Lithos 113:691–708

    Article  Google Scholar 

  • Arai S (1994) Characterization of spinel peridotites by olivine-spinel compositional relationships: review and interpretation. Chem Geol 113:191–204

    Article  Google Scholar 

  • Arai S (1997) Control of wall-rock composition on the formation of podiform chromitites as a result of magma/peridotite interaction. Resour Geol 47:177–187

    Google Scholar 

  • Arai S, Miura M (2015) Podiform chromitites do form beneath mid-ocean ridges. Lithosphere 232:143–149

    Google Scholar 

  • Arai S, Yurimoto H (1994) Podiform chromitites of the Tari-Misaka ultramafic complex, Southwestern Japan, as mantle–melt interaction products. Eco Geogr 89:1279–1288

    Google Scholar 

  • Arai S, Kadoshima K, Morishita T (2006) Widespread arc-related melting in the mantle section of the northern Oman ophiolite as inferred from detrital chromian spinels. J Geol Soc London 163:869–879

    Article  Google Scholar 

  • Bağci U (2013) The geochemistry and petrology of the ophiolitic rocks from the Kahramanmaraş, Region, Southern Turkey. Turk J Earth Sci 22:536–562

    Google Scholar 

  • Bağci U, Parlak O, Höck V (2006) Geochemical character and tectonic environment of ultramafic to mafic cumulates from the Tekirova (Antalya) ophiolite (southern Turkey). Geol J 41:193–219

    Article  Google Scholar 

  • Ballhaus C (1998) Origin of podiform chromite deposits by magma mingling. Earth Planet Sci Lett 156:185–193

    Article  Google Scholar 

  • Ballhaus C, Berry RF, Green DH (1990) Oxygen fugacity controls in the Earth’supper mantle. Nature 348:437–440

    Article  Google Scholar 

  • Ballhaus C, Berry RF, Green DH (1991) High pressure experimental calibration of the olivine–orthopyroxene–spinel oxygen geobarometer: implications for the oxidation state for the upper mantle. Contrib Mineral Petrol 107:27–40

    Article  Google Scholar 

  • Barnes SJ, Roeder PL (2001) The range of spinel composition in terrestrial Mafic and Ultramafic Rocks. J Petrol 42:2279–2302

    Article  Google Scholar 

  • Beccaluva L, Ohnenstetter D, Ohnenstetter M, Paupy A (1984) Two magmatic series with island arc affinities within the Vourinos ophiolite. Contrib Mineral Petrol 85:253–271

    Article  Google Scholar 

  • Beccaluva L, Coltorti M, Premti I, Saccani E, Siena F, Zeda O (1994) Mid-ocean ridge and supra-subduction affinities in ophiolitic belts from Albania. Ofioliti 19:77–96

    Google Scholar 

  • Büchl A, Brugmann G, Batanova V (2004) Formation of podiform chromitite deposits: implications from PGE abundances and Os isotopic compositions of chromites from the Troodos complex, Cyprus. Chem Geol 208:217–232

    Article  Google Scholar 

  • Cassard D, Nicolas A, Rabinowicz M, Moutte M, Leblanc M, Prinzhofer A (1981) Structural classification of chromite pods in southern New Caledonia. Eco Geogr 76:805–831

    Google Scholar 

  • Celik OF, Delaloye M, Feraud G (2006) Precise 40Ar–39Ar ages from the metamorphic sole rocks of the Tauride Belt Ophiolites, southern Turkey: implications for the rapid cooling history. Geol Mag 143:213–227

    Article  Google Scholar 

  • Collins AS, Robertson AHF (1998) Processes of Late Cretaceous to Miocene episodic thrust-sheet translation in the Lycian Taurides, SW Turkey. J Geol Soc London 155:759–772

    Article  Google Scholar 

  • Crawford AJ, Cameron WE (1985) Petrology and geochemistry of Cambrian boninites and low-Ti andesites from Heathcote, Victoria. Contrib Mineral Petrol 91:93–104

    Article  Google Scholar 

  • Crawford AJ, Beccaluva L, Serri G (1981) Tectono-magmatic evolution of the West Philippine-Mariana region and the origin of boninites. Earth Planet Sci Lett 54:346–356

    Article  Google Scholar 

  • Crawford AJ, Beccaluva L, Serri G, Dostal J (1986) Petrology, geochemistry and tectonic implications of volcanics dredged from the intersection of the Yap and Mariana trenches. Earth Planet Sci Lett 80:265–280

    Article  Google Scholar 

  • Daines MJ, Kohlstedt DL (1994) The transition from porous to channelized flow due to melt/rock reaction during melt migration. Geophys Res Lett 21:145–148

    Article  Google Scholar 

  • Dare SAS, Pearce JA, McDonald I, Styles MT (2009) Tectonic discrimination of peridotites using fO2–Cr# and Ga–Ti–Fe III systematic in chrome-spinel. Chem Geol 261:199–216

    Article  Google Scholar 

  • Dick HJ, Bullen T (1984) Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contrib Mineral Petrol 86:54–76

    Article  Google Scholar 

  • Dick HJ, Natland JH (1996) Late-stage melt evolution and transport in the shallow mantle beneath the East Pacific Rise//Proceedings-Ocean Drilling Program Scientific Results. National Science Foundation pp 103–134

  • Dilek Y, Furnes H (2009) Structure and geochemistry of Tethyan ophiolites and their petrogenesis in subduction rollback systems. Lithosphere 113:1–20

    Google Scholar 

  • Dilek Y, Furnes H, Shallo M (2007) Suprasubduction zone ophiolite formation along the periphery of Mesozoic Gondwana. Gondwana Res 11:453–475

    Article  Google Scholar 

  • Dilek Y, Furnes H, Shallo M (2008) Geochemistry of the Jurassic Mirdita Ophiolite (Albania) and the MORB to SSZ evolution of a marginal basin oceanic crust. Lithosphere 100:174–209

    Google Scholar 

  • Economou-Eliopoulos M, Tarkian M, Sambanis G (1999) On the geochemistry of chromitites from the Pindos ophiolite complex, Greece. Chem Erde-Geochem 59:19–31

    Google Scholar 

  • Falloon TJ, Danyushevsky LV (2000) Melting of refractory mantle at 1.5, 2, and 2.5G Pa under anhydrous and H2O-undersaturated conditions: implications for the petrogenesis of high-Ca boninites and the influence of subduction components on mantle melting. J Petrol 41:257–283

    Article  Google Scholar 

  • Fisk MR (1986) Basalt magma interaction with harzburgite and the formation of high magnesian andesite. Geophys Res Lett 13:467–470

    Article  Google Scholar 

  • Gaetani GA, Grove TL (1998) The influence of water on melting of mantle peridotite. Contrib Mineral Petrol 131:323–346

    Article  Google Scholar 

  • Gasparik T (1987) Orthopyroxene thermobarometry in simple and complex systems. Contrib Mineral Petrol 96:357–370

    Article  Google Scholar 

  • Ghiorso MS, Hirschmann MM, Reiners PW, Kress III VC (2002) The pMELTS: a revision of MELTS aimed at improving calculation of phase relations and major element partitioning involved in partial melting of the mantle at pressures up to 3 GPa. Geochem Geophys Geosyst 3:1–35

    Article  Google Scholar 

  • González-Jiménez JM, Griffin WL, Proenza JA, Gervilla F, O’Reilly SY, Akbulut M, Pearson NJ, Arai S (2014) Chromitites in ophiolites: how, where, when, why? Part II. The crystallization of chromitites. Lithos 189:140–158

    Article  Google Scholar 

  • Hawkinsv JW, Castillo PR (1998) Early history of the Izu–Bonin–Mariana arc system: evidence from Belau and the Palau Trench. Isl Arc 7:559–578

    Article  Google Scholar 

  • Kamenetsky VS, Crawford AJ, Meffre S (2001) Factors controlling chemistry of magmatic spinel: an empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. J Petrol 42:655–671

    Article  Google Scholar 

  • Kelemen PB (1990) Reaction between ultramafic rock and fractionating basaltic magma I. phase relations, the origin of calc-alkaline magma series, and the formation of discordant dunite. J Petrol 31:51–98

    Article  Google Scholar 

  • Kelemen PB (1995) Genesis of high Mg andesites and the continental crust. Contrib Mineral Petrol 120:1–19

    Article  Google Scholar 

  • Kelemen PB, Shimizu N, Salters VJM (1995) Extraction of mid-ocean-ridge basalt from the upwelling mantle by focused flow of melt in dunite channels. Nature 375:747–753

    Article  Google Scholar 

  • Klemn W, Bombach G (2001) A simple method of target prepation for the bulk analysis of power samples by laser ablation inductively coupled plasma spectrometry (LA-ICP-MS). Fresenius J Anal Chem 370:641–646

    Article  Google Scholar 

  • Klingenberg BME, Kushiro I (1996) Melting of a chromite-bearing harzburgite and generation of boninitic melts at low pressures under controlled oxygen fugacity. Lithosphere 37:1–13

    Google Scholar 

  • Lago BL, Rabinowicz M, Nicolas A (1982) Podiform chromitite ore bodies: a genetic model. J Petrol 23:103–125

    Article  Google Scholar 

  • Luguet A, Lorand JP, Seyler M (2003) Sulfide petrology and highly siderophile element geochemistry of abyssal peridotites: a coupled study of samples from the Kane Fracture Zone (45°W 23° 20N, MARK area, Atlantic Ocean). Geochim Cosmochim Acta 67:1553–1570

    Article  Google Scholar 

  • Macpherson CG, Hall R (2001) Tectonic setting of Eocene boninite magmatism in the Izu–Bonin–Mariana forearc. Earth Planet Sci Lett 186:215–230

    Article  Google Scholar 

  • Matsumoto I, Arai S, Yamauchi H (1997) High-Al podiform chromitites in dunite-harzburgite complexes of the Sangun zone, central Chugoku district, Southwest Japan. J Asian Earth Sci 15:295–302

    Article  Google Scholar 

  • Maurel C, Maurel P (1982) Étude expérimentale de la distribution de l’aluminium entre bain silicaté basique et spinelle chromifère. Implications pétrogénétiques: teneur en chrome des spinelles. B Mineral 105:640–647

    Google Scholar 

  • Melcher F, Grum W, Thalhammer T, Thalhammer O (1999) The giant chromite deposits at Kempirsai, Urals: constraints from trace element (PGE, REE) and isotope data. Miner Deposita 34:250–272

    Article  Google Scholar 

  • Miao LC, Fan WM, Liu DY, Zhang FQ, Jian P, Guo F (2008) Geochronology and geochemistry of the Hegenshan ophiolitic complex: implications for late-stage tectonic evolution of the Inner Mongolia-Daxinganling orogenic belt, China. J Asian Earth Sci 32:348–370

    Article  Google Scholar 

  • Miyashiro A (1974) Volcanic rock series in island arcs and active continental margins. Am J Sci 274:321–355

    Article  Google Scholar 

  • Mondal SK, Ripley EM, Li C, Frey R (2006) The genesis of Archean chromitites from Nuashi and Sukinda massifs in the Singhbhum Craton, India. Precambrian Res 148:45–66

    Article  Google Scholar 

  • Morishita T, Maeda J, Miyashita S, Kumagai H, Matsumoto T, Dick HJB (2007) Petrology of local concentration of chromian spinel in dunite from the slow-spreading southwest Indian Ridge. Eur J Mineral 19:871–882

    Article  Google Scholar 

  • Nakamura M (1995) Residence time and crystallization history of nickeliferous olivine phenocrysts from northern Yatsugatake volcanoes, central Japan: application of a growth and diffusion model in the system Mg-Fe-Ni. J Volcanol Geotherm Res 66:81–100

    Article  Google Scholar 

  • Niu Y, Langmuir CH, Kinzler RJ (1997) The origin of abyssal peridotites: a new perspective. Earth Planet Sci Lett 152:251–265

    Article  Google Scholar 

  • O’Neill H, Wall V (1987) The olivine–orthopyroxene–spinel oxygen geobarometer, the nickel precipitation curve, and the oxygen fugacity of the Earth’s upper mantle. J Petrol 28:1169–1191

    Article  Google Scholar 

  • Okay AI, Tansel I, Tuysuz O (2001) Obduction, subduction and collision as reflected in the Upper Crateceous-Lower Eocene sedimentary record of western Turkey. Geol Mag 138:1171–1142

    Article  Google Scholar 

  • Ozawa K (1994) Melting and melt segregation in the mantle wedge above a subduction zone: evidence from the chromite-bearing peridotites of the Miyamori Ophiolite Complex, northeastern Japan. J Petrol 35:647–678

    Article  Google Scholar 

  • Pagé P, Bédard JH, Schroetter JM, Tremblay A (2008) Mantle petrology and mineralogy of the Thetford Mines ophiolite complex. Lithosphere 100:255–292

    Google Scholar 

  • Palme H, O’Neill HSC (2004) Cosmochemical estimates of mantle composition. Treatise on geochemistry, 2. Elsevier, New York 1–38

    Google Scholar 

  • Parkinson IJ, Arculus RJ (1999) The redox state of subduction zones: insights from arc-peridotites. Chem Geol 160:409–423

    Article  Google Scholar 

  • Parkinson IJ, Pearce JA (1998) Peridotites from the Izu–Bonin–Mariana forearc (ODPLeg 125): evidence for mantle melting and melt–mantle interaction in a supra subduction zone setting. J Petrol 39:1577–1618

    Article  Google Scholar 

  • Parlak O, Höck V, Delaloye M (2002) The supra subduction zone Pozanti-Karsanti ophiolite, southern Turkey: evidence for high-pressure crystal fractionation of ultramafic cumulates. Lithos 65:205–224

    Article  Google Scholar 

  • Pearce JA, Lippard SJ, Roberts S (1984) Characteristics and tectonicsignificance of supra-subduction zone ophiolites. Geol Soc Lond Spec Publ 16:77–89

    Article  Google Scholar 

  • Pearce JA, Barker PF, Edwards SJ, Parkinson IJ, Leat PT (2000) Geochemistry and tectonic significance of peridotites from the South Sandwich arc-basin system, South Atlantic. Contrib Mineral Petrol 139:36–53

    Article  Google Scholar 

  • Reagan MK, Meijer A (1984) Geology and geochemistry of early arc-volcanic rocksfrom Guam. Geol Soc Am Bull 95:701–713

    Article  Google Scholar 

  • Roberts S (1988) Ophiolitic chromitite formation: a marginal basin phenomenon? Econ Geol 83:1034–1036

    Article  Google Scholar 

  • Robertson AHF (2002) Overview of the genesis and emplacement of Mesozoic ophiolites in the Eastern Mediterranean Tethyan region. Lithosphere 65:1–67

    Google Scholar 

  • Sack RO, Ghiosro MS (1991) Chromian spinel as petrogenetic indicators: thermodynamics and petrological applications. Am Mineral 76:827–847

    Google Scholar 

  • Shervais JW (2001) Birth, death, and resurrection: the life cycle ofsuprasubduction zone ophiolites. Geochem Geophys Geosyst 2 (Paper# 2000GC000080)

    Article  Google Scholar 

  • Smith SE, Elthon D (1988) Mineral compositions of plutonic rocks from the Lewis Hills massif, Bay of Islands ophiolite. J Geophys Res-Solid 93:3450–3468

    Article  Google Scholar 

  • Sobolev AV, Danyushevsky LV (1994) Petrology and geochemistry of boninites formthe north termination of the Tonga trench: constraints on the generation conditions of primary high-Ca boninite magmas. J Petrol 35:1183–1211

    Article  Google Scholar 

  • Stern RJ, Bloomer SH (1992) Subduction zone infancy: examples from the Eocene Izu–Bonin–Mariana and Jurassic California arcs. Geol Soc Am Bull 104:1621–1636

    Article  Google Scholar 

  • Uysal I, Sadiklar M, Tarkian M, Karsli O, Aydin F (2005) Mineralogy and composition of the chromitites and their platinum-group minerals from Ortaca (Muğla-SW Turkey): evidence for ophiolitic chromitite genesis. Mineral Petrol 83:219–242

    Article  Google Scholar 

  • Uysal I, Zaccarini F, Garuti G, Meisel T, Tarkian M, Bernhardt HJ, Sadiklar MB (2007a) Ophiolitic chromitites from the Kahramanmaras area, southeastern Turkey: their platinum group elements (PGE) geochemistry, mineralogy and Os-isotope signature. Ofioliti 32:151–161

    Google Scholar 

  • Uysal I, Kaliwoda M, Karsli O, Tarkian M, Sadiklar MB, Ottley CJ (2007b) Compositional variations as a result of partial melting and melt–peridotite interaction in an upper mantle section from the Ortaca area, southwestern Turkey. Can Mineral 45:1471–1493

    Article  Google Scholar 

  • Uysal I, Tarkian M, Sadiklar MB, Şen C (2007c) Platinum-group-element geochemistry and mineralogy of ophiolitic chromitites from the Kop mountains, Northeastern Turkey. Can Mineral 45:355–377

    Article  Google Scholar 

  • Uysal I, Tarkian M, Sadiklar MB, Zaccarini F, Meisel T, Garuti G, Heidrich S (2009) Petrology of Al- and Cr-rich ophiolitic chromitites from the Muğla, SW Turkey: implications from composition of chromite, solid inclusions of platinum-group mineral, silicate, and base-metal mineral, and Os-Isotope geochemistry. Contrib Mineral Petr 158:659–674

    Article  Google Scholar 

  • Uysal I, Ersoy EY, Karsli O, Dilek Y, Sadiklar MB, Ottley CJ, Tiepolo M, Meisel T (2012) Coexistence of abyssal and ultra-depleted SSZ type mantle peridotites in a Neo-Tethyan ophiolite in SW Turkey: constraints from mineral composition, whole-rock geochemistry (major-trace-REE-PGE), and Re-Os isotope systematics. Lithosphere 132–133:50–69

    Google Scholar 

  • Uysal I, Ersoy EY, Dilek Y, Kapsiotis A, Sarıfakıoğlu E (2016) Multiple episodes of partial melting, depletion, metasomatism and enrichment processes recorded in the heterogeneous upper mantle sequence of the Neotethyan Eldivan ophiolite, Turkey. Lithosphere 246:228–245

    Google Scholar 

  • Uysal I, Dokuz A, Kapsiotis A, Saka S, Karsl O, Kaliwoda M, Müller D (2017) Petrogenesis of ultramafic rocks from the eastern Orhaneli ophiolite, NW Turkey: hints on the initiation and evolution of melt-peridotite interaction processes within a heterogeneously depleted mantle section. J Asian Earth Sci 148:51–64

    Article  Google Scholar 

  • van der Laan SR, Flower MFJ, Koster van Groos AF (1989) Experimental evidence for the origin of boninites, near-liquidus phase relations to 7.5 kbar. In: Crawford AJ (ed) Boninites, pp 112–147

  • Varfalvy V, Hébert R, Bédard JH (1996) Interactions between melt and upper-mantle peridotites in the North Arm Mountain massif, Bay of Islands ophiolite, Newfoundland, Canada: implications for the genesis of boninitic and related magmas. Chem Geol 129:71–90

    Article  Google Scholar 

  • Varfalvy V, Hébert R, Bédard JH, Laflèche M (1997) Petrology and geochemistry of pyroxenite dykes in upper mantle peridotites of the North ArmMountain massif, Bay of Islands ophiolite, Newfoundland: implications for the genesis of boninitic and related magmas. Can Mineral 35:543–570

    Google Scholar 

  • Wan Z, Laurence A, Coogan LA, Canil D (2008) Experimental calibration of aluminum partitioning between olivine and spinel as a geothermometer. Am Mineral 93:1142–1147

    Article  Google Scholar 

  • Xia LQ, Xia ZC, Xu XY (2003) Magmageneisis in the Ordovician in backarc basins of the northern Qilian Mountains, China. Geol Soc Am Bull 115:1510–1522

    Article  Google Scholar 

  • Xiong FH, Yang JS, Liu Z, Guo GL, Chen SY, Xu XZ, Li Y, Liu F (2013) High-Cr and high-Al chromitite found in western Yarlung-Zangbo suture zone in Tibet. Acta Petrol Sin 29:1878–1908 (Chinese with an English abstract)

    Google Scholar 

  • Xiong FH, Yang JS, Robinson PT, Xu XZ, Liu Z, Li Y, Li JY, Chen SY (2015a) Origin of podiform chromitite, a new model based on the Luobusa ophiolite, Tibet. Gondwana Res 27:525–542

    Article  Google Scholar 

  • Xiong FH, Yang JS, Robinson PT, Dilek Y, Milushi I, Xu XZ, Chen YH, Zhou WD, Zhang ZM, Lai SM, Tian YZ, Huang Z (2015b) Petrology and geochemistry of high Cr# podiform chromitites of Bulqiza, Eastern Mirdita Ophiolite (EMO), Albania. Ore Geol Rev 70:188–207

    Article  Google Scholar 

  • Xiong FH, Yang JS, Robinson PT, Xu XZ, Liu Z, Zhou WD, Feng GY, Xu JF, Li J, Niu XL (2017) High-Al and high-Cr podiform chromitites from the western Yarlung-Zangbo suture zone, Tibet: implications from mineralogy and geochemistry of chromian spinel, and platinum-group elements. Ore Geol Rev 80:1020–1041

    Article  Google Scholar 

  • Xu XZ, Yang JS, Guo GL, Li JY (2011) Lithological research on the Purang mantle peridotite in western Yarlung-Zangbo suture zone in Tibet. Acta Petrol Sin 27:3179–3196 :(Chinese with an English abstract)

    Google Scholar 

  • Zhou MF, Robinson PT (1994) High-Cr and high–Al podiform chromitites, western China: relationship to partial melting and melt/rock interaction in the upper mantle. Int Geol Rev 36:678–686

    Article  Google Scholar 

  • Zhou MF, Robinson PT, Malpas J, Li Z (1996) Podiform chromitites in the Luobusa ophiolite (southern Tibet): implications for melt-rock interaction and chromite segregation in the upper mantle. J Petrol 37:3–21

    Article  Google Scholar 

  • Zhou MF, Sun M, Keays RR, Kerrich RW (1998) Controls on platinum-group elemental distributions of podiform chromitites: a case study of high-Cr and high-Al chromitites from Chinese orogenic belts. Geochim Cosmochim Acta 62:677–688

    Article  Google Scholar 

  • Zhou MF, Robinson PT, Malpas J, Aitchison J, Sun M, Bai WJ, Hu XF, Yang JS (2001) Melt/mantle interaction and melt evolution in the Sartohay high-Al chromite deposits of the Dalabute ophiolite (NW China). J Asian Earth Sci 19:517–534

    Article  Google Scholar 

  • Zhou MF, Robinson PT, Malpas J, Edwards SJ, Qi L (2005) REE and PGE geochemical constraints on the formation of dunites in the Luobusa ophiolite, southern Tibet. J Petrol 46:615–639

    Article  Google Scholar 

Download references

Acknowledgements

We thank Wenda Zhou for assistance and the Key Laboratory for Continental Tectonics and Dynamics, Institute of Geology, Chinese Academy of Geological Sciences, China and the China National Research Center, for the geochemical analyses. İbrahim Uysal, Dirk Spengler, an anonymous reviewer and journal editor Shah Wali Faryad are thanked for their comments and suggestions that helped to improve the manuscript. This research was funded by grants from Sinoprobe-05-02 and 201511022 from the Ministry of Science and Technology of China, the National Science Foundation of China (grants 41502062, 41672046, 41541017 and 41641015), the China Geological Survey (grants 1212010918013 and 12120114061801), project J1526 of the Institute of Geology, Chinese Academy of Geological Sciences, and the International Geosciences Program, project 649.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangzhen Xu.

Additional information

Editorial handling: S. W. Faryad

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 464 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, F., Yang, J., Dilek, Y. et al. Petrology and geochemistry of the high-Cr podiform chromitites of the Köycegiz ophiolite, southwest Turkey: implications for the multi-stage evolution of the oceanic upper mantle. Miner Petrol 112, 685–704 (2018). https://doi.org/10.1007/s00710-018-0560-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-018-0560-4

Keywords

Navigation