Three-dimensional quantitative imaging of Tobacco mosaic virus and Zucchini yellow mosaic virus induced ultrastructural changes

Abstract

Two-dimensional ultrastructural changes of Tobacco mosaic virus (TMV) and Zucchini yellow mosaic virus (ZYMV) in tobacco and pumpkin plants, respectively, are well studied. To provide 3D data, representative control and infected cells were reconstructed using serial sectioning and transmission electron microscopy. Quantitative data of 3D ultrastructural changes were then extracted from the cytosol and organelles by image analysis. While TMV induced the accumulation of an average of 40 virus inclusion bodies in the cytosol, which covered about 13% of the cell volume, ZYMV caused the accumulation of an average of 1752 cylindrical inclusions in the cytosol, which covered about 2.7% of the total volume of the cell. TMV infection significantly decreased the number and size of mitochondria (− 49 and − 20%) and peroxisomes (− 62 and − 28%) of the reconstructed cell. The reconstructed ZYMV-infected cell contained more (105%) and larger (109%) mitochondria when compared to the control cell. While the reconstructed TMV-infected cell contained larger (20%) and the ZYMV-infected smaller (19%) chloroplasts, both contained less chloroplasts (− 40% for TMV and − 23% for ZYMV). In chloroplasts, the volume of starch and plastoglobules increased (664% and 150% for TMV and 1324% and 1300% for ZYMV) when compared to the control. The latter was correlated with a decrease in the volume of thylakoids in the reconstructed ZYMV-infected cell (− 31%) indicating that degradation products from thylakoids are transported and stored in plastoglobules. Summing up, the data collected in this study give a comprehensive overview of 3D changes induced by TMV and ZYMV in plants.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Austin JR, Frost E, Vidi PA, Kessler F, Staehelin LA (2006) Plastoglobules are lipoprotein subcompartments of the chloroplast that are permanently coupled to thylakoid membranes and contain biosynthetic enzymes. Plant Cell 18(7):1693–1703. https://doi.org/10.1105/tpc.105.039859

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Balachandran S, Osmond CB, Makino A (1994) Effects of 2 strains of Tobacco mosaic virus on photosynthetic characteristics and nitrogen partitioning in leaves of Nicotiana tabacum cv Xanthi during photoacclimation under 2 nitrogen nutrition regimes. Plant Physiol 104(3):1043–1050. https://doi.org/10.1104/pp.104.3.1043

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Cardona A, Saalfeld S, Schindelin J, Arganda-Carreras I, Preibisch S, Longair M, Tomancak P, Hartenstein V, Douglas RJ (2012) TrakEM2 software for neural circuit reconstruction. PLoS One 7(6):e38011. https://doi.org/10.1371/journal.pone.0038011

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Carrington JC, Jensen PE, Schaad MC (1998) Genetic evidence for an essential role for Potyvirus CI protein in cell-to-cell movement. Plant J 14(4):393–400. https://doi.org/10.1046/j.1365-313x.1998.00120.x

    CAS  Article  PubMed  Google Scholar 

  5. Chen Q, Zheng L, Mao Q, Liu J, Wang H, Jia D, Chen H, Wu W, Wei T (2019) Fibrillar structures induced by a plant reovirus target mitochondria to activate typical apoptotic response and promote viral infection in insect vectors. PLoS Pathog 15(1):e1007510. https://doi.org/10.1371/journal.ppat.1007510

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Cowan GH, Roberts AG, Chapman SN, Ziegler A, Savenkov EI, Torrance L (2012) The potato mop-top virus TGB2 protein and viral RNA associate with chloroplasts and viral infection induces inclusions in the plastids. Front Plant Sci 3:290. https://doi.org/10.3389/fpls.2012.00290

    Article  PubMed  PubMed Central  Google Scholar 

  7. Desbiez C, Wipf-Scheibel C, Lecoq H (1999) Reciprocal assistance for aphid transmission between non-transmissible strains of Zucchini yellow mosaic Potyvirus in mixed infections. Brief report Arch Virol 144(11):2213–2218. https://doi.org/10.1007/s007050050635

    CAS  Article  PubMed  Google Scholar 

  8. Desbiez CLH (1997) Zucchini yellow mosaic virus. Plant Pathol 46:809–829

    Article  Google Scholar 

  9. Diaz-Vivancos P, Clemente-Moreno MJ, Rubio M, Olmos E, Garcia JA, Martinez-Gomez P, Hernandez JA (2008) Alteration in the chloroplastic metabolism leads to ROS accumulation in pea plants in response to plum pox virus. J Exp Bot 59(8):2147–2160. https://doi.org/10.1093/jxb/ern082

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Edwardson JR (1992) Inclusion bodies. Arch Virol Suppl 5:25–30. https://doi.org/10.1007/978-3-7091-6920-9_3

    CAS  Article  PubMed  Google Scholar 

  11. Elbeshehy EKF (2017) Inhibitor activity of different medicinal plants extracts from Thuja orientalis, Nigella sativa L., Azadirachta indica and Bougainvillea spectabilis against Zucchini yellow mosaic virus (ZYMV) infecting Citrullus lanatus. Biotechnol Biotec Eq 31(2):270–279. https://doi.org/10.1080/13102818.2017.1279572

    Article  Google Scholar 

  12. Espinoza C, Medina C, Somerville S, Arce-Johnson P (2007) Senescence-associated genes induced during compatible viral interactions with grapevine and Arabidopsis. J Exp Bot 58(12):3197–3212. https://doi.org/10.1093/jxb/erm165

    CAS  Article  PubMed  Google Scholar 

  13. Fernandez-Calvino L, Osorio S, Hernandez ML, Hamada IB, del Toro FJ, Donaire L, Yu A, Bustos R, Fernie AR, Martinez-Rivas JM, Llave C (2014) Virus-induced alterations in primary metabolism modulate susceptibility to Tobacco rattle virus in Arabidopsis. Plant Physiol 166(4):1821–U1991. https://doi.org/10.1104/pp.114.250340

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Fernandez A, Guo HS, Saenz P, Simon-Buela L, Gomez de Cedron M, Garcia JA (1997) The motif V of plum pox potyvirus CI RNA helicase is involved in NTP hydrolysis and is essential for virus RNA replication. Nucleic Acids Res 25(22):4474–4480. https://doi.org/10.1093/nar/25.22.4474

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Gabrenaite-Verkhovskaya R, Andreev IA, Kalinina NO, Torrance L, Taliansky ME, Makinen K (2008) Cylindrical inclusion protein of potato virus A is associated with a subpopulation of particles isolated from infected plants. J Gen Virol 89:829–838. https://doi.org/10.1099/vir.0.83406-0

    CAS  Article  PubMed  Google Scholar 

  16. Gal-On A (2007) Zucchini yellow mosaic virus: insect transmission and pathogenicity -the tails of two proteins. Mol Plant Pathol 8(2):139–150. https://doi.org/10.1111/j.1364-3703.2007.00381.x

    CAS  Article  PubMed  Google Scholar 

  17. Ghanta S, Bhattacharyya D, Sinha R, Banerjee A, Chattopadhyay S (2011) Nicotiana tabacum overexpressing gamma-ECS exhibits biotic stress tolerance likely through NPR1-dependent salicylic acid-mediated pathway. Planta 233(5):895–910. https://doi.org/10.1007/s00425-011-1349-4

    CAS  Article  PubMed  Google Scholar 

  18. Gómez-Aix C, García-García M, Aranda MA, Sánchez-Pina MA (2015) Melon necrotic spot virus replication occurs in association with altered mitochondria. Mol Plant-Microbe Interact 28(4):387–397. https://doi.org/10.1094/mpmi-09-14-0274-r

    Article  PubMed  Google Scholar 

  19. Han Y, Chaouch S, Mhamdi A, Queval G, Zechmann B, Noctor G (2013) Functional analysis of Arabidopsis mutants points to novel roles for glutathione in coupling H(2)O(2) to activation of salicylic acid accumulation and signaling. Antioxid Redox Signal 18(16):2106–2121. https://doi.org/10.1089/ars.2012.5052

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Heinlein M, Padgett HS, Gens JS, Pickard BG, Casper SJ, Epel BL, Beachy RN (1998) Changing patterns of localization of the Tobacco mosaic virus movement protein and replicase to the endoplasmic reticulum and microtubules during infection. Plant Cell 10(7):1107–1120. https://doi.org/10.1105/tpc.10.7.1107

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Hernandez JA, Diaz-Vivancos P, Rubio M, Olmos E, Ros-Barcelo A, Martinez-Gomez P (2006) Long-term plum pox virus infection produces an oxidative stress in a susceptible apricot, Prunus armeniaca, cultivar but not in a resistant cultivar. Physiol Plant 126(1):140–152. https://doi.org/10.1111/j.1399-3054.2005.00581.x

    CAS  Article  Google Scholar 

  22. Hernandez JA, Rubio M, Olmos E, Ros-Barcelo A, Martinez-Gomez P (2004) Oxidative stress induced by long-term plum pox virus infection in peach (Prunus persica). Physiol Plant 122(4):486–495. https://doi.org/10.1111/j.1399-3054.2004.00431.x

    CAS  Article  Google Scholar 

  23. Heyneke E, Luschin-Ebengreuth N, Krajcer I, Wolkinger V, Müller M, Zechmann B (2013) Dynamic compartment specific changes in glutathione and ascorbate levels in Arabidopsis plants exposed to different light intensities. BMC Plant Biol 13:104. https://doi.org/10.1186/1471-2229-13-104

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Hills GJ, Plaskitt KA, Young ND, Dunigan DD, Watts JW, Wilson TM, Zaitlin M (1987) Immunogold localization of the intracellular sites of structural and nonstructural Tobacco mosaic virus proteins. Virology 161(2):488–496. https://doi.org/10.1016/0042-6822(87)90143-7

    CAS  Article  PubMed  Google Scholar 

  25. Hofmann C, Niehl A, Sambade A, Steinmetz A, Heinlein M (2009) Inhibition of Tobacco mosaic virus movement by expression of an actin-binding protein. Plant Physiol 149(4):1810–1823. https://doi.org/10.1104/pp.108.133827

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Höller K, Király L, A. K, Müller M, Gullner G, M. F, B. Z (2010) Enhanced glutathione metabolism is correlated with sulfur-induced resistance in Tobacco mosaic virus–infected genetically susceptible Nicotiana tabacum plants. Mol Plant-Microbe Interact 23:1448–1459

    Article  Google Scholar 

  27. Incarbone M, Zimmermann A, Hammann P, Erhardt M, Michel F, Dunoyer P (2017) Neutralization of mobile antiviral small RNA through peroxisomal import. Nat Plants 3:17094. https://doi.org/10.1038/nplants.2017.94

    CAS  Article  PubMed  Google Scholar 

  28. Kawakami S, Watanabe Y, Beachy RN (2004) Tobacco mosaic virus infection spreads cell to cell as intact replication complexes. Proc Natl Acad Sci U S A 101(16):6291–6296. https://doi.org/10.1073/pnas.0401221101

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Kessler F, Schnell D, Blobel G (1999) Identification of proteins associated with plastoglobules isolated from pea (Pisum sativum L.) chloroplasts. Planta 208(1):107–113. https://doi.org/10.1007/s004250050540

    CAS  Article  PubMed  Google Scholar 

  30. Kuzniak E, Sklodowska M (2005) Compartment-specific role of the ascorbate-glutathione cycle in the response of tomato leaf cells to Botrytis cinerea infection. J Exp Bot 56(413):921–933. https://doi.org/10.1093/jxb/eri086

    CAS  Article  PubMed  Google Scholar 

  31. Lecoq H, Desbiez C (2012) Viruses of cucurbit crops in the Mediterranean region: an ever-changing picture. Adv Virus Res 84:67–126. https://doi.org/10.1016/B978-0-12-394314-9.00003-8

    Article  PubMed  Google Scholar 

  32. Lim TM, Chng CG, Wong SM (1996) Study of the three-dimensional images of Potyvirus-induced cytoplasmic inclusions using confocal laser scanning microscopy. J Virol Methods 60(2):139–145. https://doi.org/10.1016/0166-0934(96)02051-4

    CAS  Article  PubMed  Google Scholar 

  33. Liu C, Nelson RS (2013) The cell biology of Tobacco mosaic virus replication and movement. Front Plant Sci 4:12. https://doi.org/10.3389/fpls.2013.00012

    Article  PubMed  PubMed Central  Google Scholar 

  34. Liu JZ, Blancaflor EB, Nelson RS (2005) The Tobacco mosaic virus 126-kilodalton protein, a constituent of the virus replication complex, alone or within the complex aligns with and traffics along microfilaments. Plant Physiol 138(4):1853–1865. https://doi.org/10.1104/pp.105.065722

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Luschin-Ebengreuth N, Zechmann B (2016) Compartment-specific investigations of antioxidants and hydrogen peroxide in leaves of Arabidopsis thaliana during dark-induced senescence. Acta Physiologiae Plantarum 38 (6). doi: ARTN 133. https://doi.org/10.1007/s11738-016-2150-6

  36. Martelli GP, Russo M (1977) Plant virus inclusion bodies. Adv Virus Res 21:175–266. https://doi.org/10.1016/s0065-3527(08)60763-0

    CAS  Article  PubMed  Google Scholar 

  37. Mas P, Beachy RN (1999) Replication of Tobacco mosaic virus on endoplasmic reticulum and role of the cytoskeleton and virus movement protein in intracellular distribution of viral RNA. J Cell Biol 147(5):945–958. https://doi.org/10.1083/jcb.147.5.945

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. Merits A, Guo D, Saarma M (1998) VPg, coat protein and five non-structural proteins of potato A Potyvirus bind RNA in a sequence-unspecific manner. J Gen Virol 79(Pt 12):3123–3127. https://doi.org/10.1099/0022-1317-79-12-3123

    CAS  Article  PubMed  Google Scholar 

  39. Mochizuki T, Ohki ST (2011) Single amino acid substitutions at residue 129 in the coat protein of cucumber mosaic virus affect symptom expression and thylakoid structure. Arch Virol 156(5):881–886. https://doi.org/10.1007/s00705-010-0910-y

    CAS  Article  PubMed  Google Scholar 

  40. Moshe A, Gorovits R (2012) Virus-induced aggregates in infected cells. Viruses 4(10):2218–2232. https://doi.org/10.3390/v4102218

    Article  PubMed  PubMed Central  Google Scholar 

  41. Naderi M, Berger PH (1997) Effects of chloroplast targeted potato virus Y coat protein on transgenic plants. Physiol Mol Plant Pathol 50(2):67–83. https://doi.org/10.1006/pmpp.1996.0071

    CAS  Article  Google Scholar 

  42. Niehl A, Amari K, Gereige D, Brandner K, Mely Y, Heinlein M (2012) Control of Tobacco mosaic virus movement protein fate by cell-division-cycle protein 48. Plant Physiol 160(4):2093–2108. https://doi.org/10.1104/pp.112.207399

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ohnishi J, Hirai K, Kanda A, Usugi T, Meshi T, Tsuda S (2009) The coat protein of Tomato mosaic virus L11Y is associated with virus-induced chlorosis on infected tobacco plants. J Gen Plant Pathol 75(4):297–306. https://doi.org/10.1007/s10327-009-0177-x

    CAS  Article  Google Scholar 

  44. Olmos E, Sanchez-Blanco MJ, Ferrandez T, Alarcon JJ (2007) Subcellular effects of drought stress in Rosmarinus officinalis. Plant Biol (Stuttg) 9(1):77–84. https://doi.org/10.1055/s-2006-924488

    CAS  Article  Google Scholar 

  45. Otulak-Kozieł K, Kozieł E, Escalante C, Valverde RA (2020) Ultrastructural analysis of cells from bell pepper (Capsicum annuum) infected with Bell pepper endornavirus. Front Plant Sci 11(491). https://doi.org/10.3389/fpls.2020.00491

  46. Otulak K, Chouda M, Bujarski J, Garbaczewska G (2015) The evidence of Tobacco rattle virus impact on host plant organelles ultrastructure. Micron 70:7–20. https://doi.org/10.1016/j.micron.2014.11.007

    CAS  Article  PubMed  Google Scholar 

  47. Radwan DEM, Ali Fayez K, Younis Mahmoud S, Hamad A, Lu G (2006) Salicylic acid alleviates growth inhibition and oxidative stress caused by zucchini yellow mosaic virus infection in Cucurbita pepo leaves. Physiol Mol Plant Pathol 69(4-6):172–181. https://doi.org/10.1016/j.pmpp.2007.04.004

    CAS  Article  Google Scholar 

  48. Rahoutei J, Garcia-Luque I, Baron M (2000) Inhibition of photosynthesis by viral infection: effect on PSII structure and function. Physiol Plant 110(2):286–292. https://doi.org/10.1034/j.1399-3054.2000.110220.x

    CAS  Article  Google Scholar 

  49. Reinero A, Beachy RN (1989) Reduced photosystem-Ii activity and accumulation of viral coat protein in chloroplasts of leaves infected with Tobacco mosaic virus. Plant Physiol 89(1):111–116. https://doi.org/10.1104/pp.89.1.111

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. Reunov AV, Gnutova IV, Lapshina LA, Nagorskaya VP, Tolkach VF (2006) Effect of Tobacco mosaic virus strains on the ultrastructure of tobacco leaf parenchymal cells. Biol Bull 33(4):409–415. https://doi.org/10.1134/s1062359006040145

    Article  Google Scholar 

  51. Roberts IM, Wang D, Findlay K, Maule AJ (1998) Ultrastructural and temporal observations of the Potyvirus cylindrical inclusions (Cls) show that the Cl protein acts transiently in aiding virus movement. Virology 245(1):173–181. https://doi.org/10.1006/viro.1998.9132

    CAS  Article  PubMed  Google Scholar 

  52. RodriguezCerezo E, Findlay K, Shaw JG, Lomonossoff GP, Qiu SG, Linstead P, Shanks M, Risco C (1997) The coat and cylindrical inclusion proteins of a Potyvirus are associated with connections between plant cells. Virology 236(2):296–306. https://doi.org/10.1006/viro.1997.8736

    CAS  Article  Google Scholar 

  53. Rottet S, Besagni C, Kessler F (2015) The role of plastoglobules in thylakoid lipid remodeling during plant development. Bba-Bioenergetics 1847(9):889–899. https://doi.org/10.1016/j.bbabio.2015.02.002

    CAS  Article  PubMed  Google Scholar 

  54. Saito T, Hosokawa D, Meshi T, Okada Y (1987) Immunocytochemical localization of the 130 K and 180 K proteins (putative replicase components) of Tobacco mosaic virus. Virology 160(2):477–481. https://doi.org/10.1016/0042-6822(87)90020-1

    CAS  Article  PubMed  Google Scholar 

  55. Schnablova R, Synkova H, Cerovska N (2005) The influence of Potato virus Y infection on the ultrastructure of Pssu-ipt transgenic tobacco. Int J Plant Sci 166(5):713–721. https://doi.org/10.1086/431807

    CAS  Article  Google Scholar 

  56. Scholthof KB (2004) Tobacco mosaic virus: a model system for plant biology. Annu Rev Phytopathol 42:13–34. https://doi.org/10.1146/annurev.phyto.42.040803.140322

    CAS  Article  PubMed  Google Scholar 

  57. Shalla TA (1964) Assembly + aggregation of Tobacco mosaic virus in tomato leaflets. J Cell Biol 21 (2):253-&. https://doi.org/10.1083/jcb.21.2.253

  58. Shand K, Theodoropoulos C, Stenzel D, Dale JL, Harrison MD (2009) Expression of Potato virus Y cytoplasmic inclusion protein in tobacco results in disorganization of parenchyma cells, distortion of epidermal cells, and induces mitochondrial and chloroplast abnormalities, formation of membrane whorls and atypical lipid accumulation. Micron 40(7):730–736. https://doi.org/10.1016/j.micron.2009.04.011

    CAS  Article  PubMed  Google Scholar 

  59. Simon UK, Polanschutz LM, Koffler BE, Zechmann B (2013) High resolution imaging of temporal and spatial changes of subcellular ascorbate, glutathione and H(2)O(2) distribution during Botrytis cinerea infection in Arabidopsis. PLoS One 8(6):e65811. https://doi.org/10.1371/journal.pone.0065811

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  60. Stefanov D, Stoimenova E, Marinova G, Ivanova B, Edreva A (2012) Accelerated leaf senescence takes part in enhanced resistance in cucumber mosaic virus inoculated pepper leaves. Acta Physiol Plant 34(1):181–190. https://doi.org/10.1007/s11738-011-0816-7

    CAS  Article  Google Scholar 

  61. Szecsi JD, X S, Lim CO, Bendahmane M, Cho MJ, Nelson RS, Beachy RN (1999) Development of Tobacco mosaic virus infection site in Nicotiana benthamiana. Mol Plant-Microbe Interact 12:143–152

    CAS  Article  Google Scholar 

  62. Tecsi LI, Maule AJ, Smith AM, Leegood RC (1994a) Complex, localized changes in Co2 assimilation and starch content associated with the susceptible interaction between Cucumber mosaic virus and a cucurbit host. Plant J 5(6):837–847. https://doi.org/10.1046/j.1365-313X.1994.5060837.x

    CAS  Article  Google Scholar 

  63. Tecsi LI, Maule AJ, Smith AM, Leegood RC (1994b) Metabolic alterations in cotyledons of Cucurbita pepo infected by Cucumber mosaic virus. Journal of Experimental Botany 45 (280):1541-1551. doi. https://doi.org/10.1093/jxb/45.11.1541

  64. Ueki S, Citovsky V (2011) To gate, or not to gate: regulatory mechanisms for intercellular protein transport and virus movement in plants. Mol Plant 4(5):782–793. https://doi.org/10.1093/mp/ssr060

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  65. Vuorinen AL, Kelloniemi J, Valkonen JP (2011) Why do viruses need phloem for systemic invasion of plants? Plant Sci 181(4):355–363. https://doi.org/10.1016/j.plantsci.2011.06.008

    CAS  Article  PubMed  Google Scholar 

  66. Wang Q, Zhang C, Wang C, Qian Y, Li Z, Hong J, Zhou X (2017) Further characterization of Maize chlorotic mottle virus and its synergistic interaction with Sugarcane mosaic virus in maize. Sci Rep 7:39960. https://doi.org/10.1038/srep39960

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  67. Wei T, Zhang C, Hong J, Xiong R, Kasschau KD, Zhou X, Carrington JC, Wang A (2010) Formation of complexes at plasmodesmata for Potyvirus intercellular movement is mediated by the viral protein P3N-PIPO. PLoS Pathog 6(6):e1000962. https://doi.org/10.1371/journal.ppat.1000962

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  68. Wilhelmova N, Prochazkova D, Sindelarova M, Sindelar L (2005) Photosynthesis in leaves of Nicotiana tabacum L. infected with Tobacco mosaic virus. Photosynthetica 43(4):597–602. https://doi.org/10.1007/s11099-005-0093-z

    CAS  Article  Google Scholar 

  69. Xu YFM (1998) Ultrastructural differences of RMV and TMV infected Nicotiana tabacum mesophyll cells for distinguishing virus strains. Acta Microbiol Sin 38:422–427

    CAS  Google Scholar 

  70. Yan SL, Lehrer AT, Hajirezaei MR, Springer A, Komor E (2008) Modulation of carbohydrate metabolism and chloroplast structure in sugarcane leaves which were infected by Sugarcane yellow leaf virus (SCYLV). Physiol Mol Plant Pathol 73(4-5):78–87. https://doi.org/10.1016/j.pmpp.2009.02.004

    CAS  Article  Google Scholar 

  71. Ytterberg AJ, Peltier JB, van Wijk KJ (2006) Protein profiling of plastoglobules in chloroplasts and chromoplasts. A surprising site for differential accumulation of metabolic enzymes. Plant Physiol 140(3):984–997. https://doi.org/10.1104/pp.105.076083

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  72. Zechmann B (2014) Compartment-specific importance of glutathione during abiotic and biotic stress. Front Plant Sci 5:566. https://doi.org/10.3389/fpls.2014.00566

    Article  PubMed  PubMed Central  Google Scholar 

  73. Zechmann B (2019) Ultrastructure of plastids serves as reliable abiotic and biotic stress marker. PLoS One 14(4):e0214811. https://doi.org/10.1371/journal.pone.0214811

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  74. Zechmann B, Müller M, Zellnig G (2003) Cytological modifications in Zucchini yellow mosaic virus (ZYMV)-infected Styrian pumpkin plants. Arch Virol 148(6):1119–1133. https://doi.org/10.1007/s00705-003-0005-0

    CAS  Article  PubMed  Google Scholar 

  75. Zechmann B, Müller M, Zellnig G (2005) Effects of different fixation and freeze substitution methods on the ultrastructural preservation of ZYMV-infected Cucurbita pepo (L.) leaves. J Electron Microsc 54(4):393–402. https://doi.org/10.1093/jmicro/dfi054

    CAS  Article  Google Scholar 

  76. Zechmann B, Zellnig G (2009) Rapid diagnosis of plant virus diseases by transmission electron microscopy. J Virol Methods 162(1-2):163–169. https://doi.org/10.1016/j.jviromet.2009.07.032

    CAS  Article  PubMed  Google Scholar 

  77. Zellnig G, Möstl S, Zechmann B (2013) Rapid immunohistochemical diagnosis of Tobacco mosaic virus disease by microwave-assisted plant sample preparation. Microscopy (Oxf) 62(5):547–553. https://doi.org/10.1093/jmicro/dft022

    CAS  Article  Google Scholar 

  78. Zellnig G, Pöckl MH, Mostl S, Zechmann B (2014) Two and three dimensional characterization of Zucchini yellow mosaic virus induced structural alterations in Cucurbita pepo L. plants. J Struct Biol 186(2):245–252. https://doi.org/10.1016/j.jsb.2014.03.006

    Article  PubMed  PubMed Central  Google Scholar 

  79. Zhao JP, Zhang X, Hong YG, Liu YL (2016a) Chloroplast in plant-virus interaction. Front Microbiol 7:1565. https://doi.org/10.3389/fmicb.2016.01565

    Article  PubMed  PubMed Central  Google Scholar 

  80. Zhao W, Yang PC, Kang L, Cui F (2016b) Different pathogenicities of Rice stripe virus from the insect vector and from viruliferous plants. New Phytol 210(1):196–207. https://doi.org/10.1111/nph.13747

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bernd Zechmann.

Ethics declarations

Ethical approval

All authors read and approved the final manuscript.

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

In memory of Ursula Lütz-Meindl

Handling Editor: Handling Editor: Andreas Holzinger

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zechmann, B., Müller, M., Möstl, S. et al. Three-dimensional quantitative imaging of Tobacco mosaic virus and Zucchini yellow mosaic virus induced ultrastructural changes. Protoplasma (2021). https://doi.org/10.1007/s00709-021-01626-0

Download citation

Keywords

  • Chloroplast
  • Tobacco mosaic virus
  • Transmission electron microscopy
  • Ultrastructure
  • Zucchini yellow mosaic virus