Impact of Meloidogyne incognita (nematode) infection on root tissues and cell wall composition of okra (Abelmoschus esculentus L. Moench, Malvaceae)

Abstract

Root-knot nematodes are endoparasites whose mature females lodge and grow inside the root of some cultivated plants, leading to losses in productivity. Herein, we investigated if the infection of okra, Abelmoschus esculentus (Malvaceae), promoted by the root-knot nematode Meloidogyne incognita (Meloidogynidae) changes some agronomic traits of the host plant, as well as the cell wall composition of the root tissues. The okra Santa Cruz 47® cultivar was infected with a suspension of 5000 M. incognita juveniles. The inoculated and non-inoculated okra plants were then submitted to morphological analysis at the end of experiment, as well as histological (at 4, 11, 18, 39, ad 66 days after inoculation) and immunocytochemical analysis (control and 66 days after inoculation). Root-knot nematode infection reduced the dry weight of the stem system but, unexpectedly, the number and weight of fruits increased. At 11 days after inoculation, we detected the presence of giant cells that increased in number and size until the end of the experiment, at 66 days after inoculation. These cells came from the xylem parenchyma and showed intense and moderate labeling for epitopes recognized by JIM5 and JIM7. The presence of homogalacturonans (HGs) with different degrees of methyl esterification seems to be related to the injuries caused by the nematode feeding activity and to the processes of giant cell hypertrophy. In addition, the presence of HGs with high methyl-esterified groups can increase the cell wall porosity and facilitate the flux of nutrients for the root-knot nematode.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Abad P, Favery B, Rosso MN, Castagnone-Sereno P (2003) Root-knot nematode parasitism and host response: molecular basis of a sophisticated interaction. Mol Plant Pathol 4:217–224. https://doi.org/10.1046/j.1364-3703.2003.00170.x

    CAS  Article  PubMed  Google Scholar 

  2. Abad P, Castagnone-Sereno P, Rosso MN, Engler JA, Bo F (2009) Invasion, feeding and development. In: Perry RN, Moens M, Starr JL (eds) In Root-knot nematodes. CABI International Press, Cambridge, pp 163–181

    Google Scholar 

  3. Abrão MM, Mazzafera P (2001) Fitossanidade. Efeitos do nível de inoculo de Meloidogyne incognita em algodoeiro. Bragantia 60:19–26. https://doi.org/10.1590/S0006-87052001000100003

    Article  Google Scholar 

  4. Albersheim P, Darvill A, Roberts K, Sederoff R, Staehelin A (2011) Plant cell walls. Garland Sci, New York 108(1):viii–ix. https://doi.org/10.1093/aob/mcr128

    Article  Google Scholar 

  5. Ali MA, Azeem FLH, Bohlmann H (2017) Smart parasitic nematodes use multifaceted strategies to parasitize plants. Front Plant Sci 8:1699. https://doi.org/10.3389/fpls.2017.01699

    Article  PubMed  PubMed Central  Google Scholar 

  6. Anwar SA, Javed N (2010) Meloidogyne incognita infecting Dahlia. Pakistan J Zool 42:348–350

    Google Scholar 

  7. Bellafiore S, Briggs SP (2010) Nematode effectors and plant responses to infection. Curr Opin Plant Biol 13:442–448. https://doi.org/10.1016/j.pbi.2010.05.006

    Article  PubMed  Google Scholar 

  8. Berg RH, Fester T, Taylor CG (2009) Development of the Root-Knot Nematode Feeding Cell. In: Berg RH, Taylor CG (eds) Cell Biology of Plant Nematode Parasitism. Plant Cell Monographs, vol 15. Springer, Berlin. 15: 115–152. https://doi.org/10.1007/978-3-540-85215-5_5

  9. Bohlmann H, Sobczak M (2014) The plant cell wall in the feeding sites of cyst nematodes. Front Plant Sci Mar 19:89. https://doi.org/10.3389/fpls.2014.00089

    Article  Google Scholar 

  10. Brass FEB, Veronezze NC, Pacheco E, Bosquê GG (2008) Aspectos biológicos do Meloidogyne spp. relevantes à cultura de café. Revista cientifica Eletrônica de Agronomia. Editora FAEF, São Paulo

    Google Scholar 

  11. Carneiro RG, Ferraz LCCB, Mazzafera P (1999) Carbon partitioning in soybean infected with Meloidogyne incognita and M. javanica. J. Nematol 31:348–355

    CAS  Google Scholar 

  12. Carneiro RGS, Pacheco P, Isaias RMS (2015) Could the extended phenotype extend to the cellular and subcellular levels in insect-induced galls? PLoS ONE 10:e0129331. https://doi.org/10.1371/journal.pone.0129331

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Castañeda NEN (2015) Estudo da interação Musa acuminata- Meloidogyne incognita. Thesis, Universidade de Brasília.

  14. Chomick G, Bidel LPR, Jay-Allemand C (2014) Exodermis structure controls fungal invasion in the leafless epiphytic orchid Dendrophylax lindenii (Lindl.) Benth. ex Rolfe. Flora 209:88–94. https://doi.org/10.1016/j.flora.2014.01.001

    Article  Google Scholar 

  15. Cofcewicz ET, Carneiro RMDG, Cordeiro CMT, Quénéhervé P, Faria JJC (2004) Reação de cultivares de bananeira a diferentes espécies de nematóides das galhas. Nematol Bras 28:11–22

    Google Scholar 

  16. Coolen WA, D’Herde CJ (1972) A method for the quantitative extraction of nematodes from plant tissue. State Agricultural Research Centre, Ghent

    Google Scholar 

  17. Davies LJ, Lilley CJ, Knox JP, Urwin PE (2012) Syncytia formed by adult female Heterodera schachtii in Arabidopsis thaliana roots have a distinct cell wall molecular architecture. New Phytol 196:238–246. https://doi.org/10.1111/j.1469-8137.2012.04238.x

    CAS  Article  PubMed  Google Scholar 

  18. Davis EL, Hussey RS, Baum TJ (2004) Getting to the roots of parasitism by nematodes. Trends Parasitol 20:134–141. https://doi.org/10.1016/j.pt.2004.01.005

    Article  PubMed  Google Scholar 

  19. Dorhout R, Gommers FJ, Kollöffel C (1991) Water transport through tomato roots infected with Meloidogyne incognita. Phytopathology 81:379–385. https://doi.org/10.1094/Phyto-81-379

    Article  Google Scholar 

  20. Escobar C, Barcala M, Cabrera J, Fenoll C (2015) Plant Nematode interactions - A view on compatible interrelationships. In: Escobar C, Fenoll C (eds) Advances in Botanical Research. Elsevier, Oxford, pp 1–32

    Google Scholar 

  21. Ferraz LCCB, Brown DJF (2016) Nematologia de plantas: fundamentos e importância. Norma editora, Manaus

    Google Scholar 

  22. Ferraz LCCB, Monteiro AR (2011) Nematoides. In: Amorim L, Rezende JAM, Bergamin Filho A (eds) Manual de fitopatologia: princípios e conceitos. Agronômica Ceres, Piracicaba, pp 277–305

    Google Scholar 

  23. Ferreira DF (2010) SISVAR - Sistema de análise de variância. Versão 5.3. UFLA, Lavras

    Google Scholar 

  24. Filgueira FAR (2008) Novo manual de olericultura: agrotecnologia moderna na produção e comercialização de hortaliças. UFV, Viçosa

    Google Scholar 

  25. Galbieri R, Belot JL (2016) Nematoides fitoparasitas do algodoeiro nos Cerrados brasileiros: biologia e medidas de controle. IMAmt, Cuiabá

    Google Scholar 

  26. Gheysen G, Mitchum MG (2011) How nematodes manipulate plant development pathways for infection. Curr Opin Plant Biol 14:415–421. https://doi.org/10.1016/j.pbi.2011.03.012

    Article  PubMed  Google Scholar 

  27. Golinowski W, Grundler FMW, Sobczak M (1996) Changes in the structure of Arabidopsis thaliana during female development of the plant-parasitic nematode Heterodera schachtii. Protoplasma 194:103–116. https://doi.org/10.1007/BF01273172

    Article  Google Scholar 

  28. Hongo S, Sato K, Yokoyama R, Nishitani K (2012) Demethylesterification of the primary wall by pectin methylesterase 35 provides mechanical support to the Arabidopsis stem. Plant Cell 24:2624–2634. https://doi.org/10.1105/tpc.112.099325

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Hussey RS, Grundler FMW (1998) Nematode parasitism of plants. In: Perry RN, Wright DJ (eds) Physiology and biochemistry of free-living and plant parasitic nematodes. CAB International Press, England, pp 213–243

    Google Scholar 

  30. Joca TAC, Oliveira DC, Zotz G, Cardoso JCF, Moreira ASFP (2019) Chemical composition of cell walls in velamentous roots of epiphytic Orchidaceae. Protoplasma 257:103–118

    Article  Google Scholar 

  31. Jones JT, Haegeman A, Danchin EGJ, Hari SG, Helder J, Jones MGK, Kikuchi T, Manzanilla-López R, Palomares-Rius JE, Wesemael WM, Perry RN (2013) Top 10 plant-parasitic nematodes in molecular plant pathology. Mol Plant Pathol 14:946–961. https://doi.org/10.1111/mpp.12057

    Article  PubMed  PubMed Central  Google Scholar 

  32. Juvale PS, Baum TJ (2018) 'Cyst-ained' research into Heterodera parasitism. PLoS Pathog 14:e1006791. https://doi.org/10.1371/journal.ppat.1006791

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Knox JP (1992) Cell adhesion, cell separation and plant morphogenesis. Plant J 2:137–141. https://doi.org/10.1111/j.1365-313X.1992.00137.x

    CAS  Article  Google Scholar 

  34. Kyndt T, Vieira P, Gheysen G, de Almeida-Engler J (2013) Nematode feeding sites: unique organs in plant roots. Planta 238:807–818. https://doi.org/10.1007/s00425-013-1923-z

    CAS  Article  PubMed  Google Scholar 

  35. Liu L, ShangGuan K, Zhang B, Liu X, Yan M, Zhang L, Shi Y, Zhang M, Qian Q, Li J, Zhou Y (2013) Brittle Culm1, a COBRA-Like Protein, Functions in Cellulose Assembly through Binding Cellulose Microfibrils. PLoS Genet 9:e1003704. https://doi.org/10.1371/journal.pgen.1003704

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Martin FW (1982) Okra, potential multiple-purpose crop for the temperate zones and tropics. Econ Bot 36:340–345. https://doi.org/10.1007/BF02858558

    Article  Google Scholar 

  37. Martini VC, Moreira ASFP, Kuster VC, Oliveira DC (2019) Galling insects as phenotype manipulators of cell wall composition during the development of galls induced on leaves of Aspidosperma tomentosum (Apocynaceae). S Afr J Bot 127:226–233. https://doi.org/10.1016/j.sajb.2019.09.006

    CAS  Article  Google Scholar 

  38. Mitkowski NA, Abawi GS (2003) Nematoide de galhas. The Plant Health Instructor, EUA

    Google Scholar 

  39. Moens M, Perry RN, Starr JL (2009) Meloidogyne species - a diverse group of novel and important plant parasites. In: Perry RN, Starr JL, Moens M (eds) Nemátodos das galhas. CABI International, Wallingford

    Google Scholar 

  40. Mota WF, Finger FL, Casali UWD (2000) Olericultura: melhoramento genético do quiabeiro. UFV, Viçosa

    Google Scholar 

  41. Nguyen PV, Bellafiore S, Petitot AS, Haidar R, Bak A, Fernandez D (2014) Meloidogyne incognita - rice (Oryza sativa) interaction: a new model system to study plant-root-knot nematode interactions in monocotyledons. Rice 7:23. https://doi.org/10.1186/s12284-014-0023-4

    Article  PubMed  PubMed Central  Google Scholar 

  42. O'Brien TP, Feder N, McCully ME (1964) Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma 59:368–373. https://doi.org/10.1007/BF01248568

    CAS  Article  Google Scholar 

  43. Oliveira AS, Silva RA (2013) Ocorrência e patogenicidade de Meloidogyne javanica sobre plantas de teca (Tectona grandis Linn. F.). Ciênc Florest 23:563–569. https://doi.org/10.5902/1980509812340

    Article  Google Scholar 

  44. Oliveira RDL, Silva MB, Aguiar NDC, Bergamo FLK, Costa ASV, Prezotti L (2007) Nematofauna associada à cultura do quiabo na região leste de Minas Gerais. Hortic Bras 25:88–93. https://doi.org/10.1590/S0102-05362007000100017

    Article  Google Scholar 

  45. Oliveira DC, Magalhães TA, Ferreira BG, Teixeira CT, Formiga AT, Fernandes GW, Isaias RMS (2014) Variation in the degree of pectin methylesterification during the development of Baccharis dracunculifolia kidney-shaped gall. PLoS One 9:e94588. https://doi.org/10.1371/journal.pone.0094588

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. Oliveira DC, Isaias RMS, Fernandes GW, Ferreira BG, Carneiro RGS (2016) Manipulation of host plant cells and tissues by gall-inducing insects and adaptive strategies used by different feeding guilds. J Insect Physiol 84:103–113. https://doi.org/10.1016/j.jinsphys.2015.11.012

    CAS  Article  PubMed  Google Scholar 

  47. Pinheiro JB (2017) Nematoides em hortaliças Brasília. Embrapa, Embrapa

    Google Scholar 

  48. Pinheiro JB, Pereira RB, Carvalho ADF, Rodrigues CS (2013) Manejo de nematoides na cultura do quiabeiro. https://www.embrapa.br/busca-de-publicacoes/-/publicacao/960522/manejo-de-nematoides-na-cultura-do-quiabeiro Accessed 20 March 2020.

  49. Premachandra DWTS, Gowen SR (2015) Influence of pre-plant densities of Meloidogyne incognita on growth and root infestation of spinach (Spinacia oleracea L.) (Amaranthaceae) – an important dimension towards enhancing crop production. Future of Food: Journal on Food. Agric Soc 3:18–26

    Google Scholar 

  50. Reddigari SR, Sundermann CA, Hussey RS (1985) Isolation of subcellular granules from second-stage juveniles of Meloidogyne incognita. J Nematol 17:482–488

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Ridley BL, O’Neill MA, Mohnen D (2001) Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry 57:929–967. https://doi.org/10.1016/S0031-9422(01)00113-3

    CAS  Article  PubMed  Google Scholar 

  52. Ritzinger CHSP, Ritzinger R (2003) Acerola, Ataque às raízes. Rev Cult Hort Frut 19:36–38

    Google Scholar 

  53. Roland JC, Vian B (1991) General preparation and staining of thin sections. In: Hall JL, Hawes C (eds) Electron microspcopy of plant cells. Academic Press, London, pp 1–66

    Google Scholar 

  54. Sharma RD, Valéria IA, Calvante MJB, Gomes AC (2005) Reação de genótipos de pimenta-longa aos nematóides Meloidogyne javanica, M. incognita raça 1 e Rotylenchulus reniformes. Nematol Bras 29:83–86

    Google Scholar 

  55. Siddique S, Grundler FMW (2015) Metabolism in Nematode Feeding Sites. In: Escobar C, Fenoll C (eds) Plant Nematode Interactions: A View on Compatible Interrelationships, vol 73. Elsevier, Nova Iorque, pp 119–138. https://doi.org/10.1016/bs.abr.2015.02.001

    Google Scholar 

  56. Sikora RA, Fernandez E (2005) Nematodes parasites of vegetables. In: Luc M, Sikora RA, Bridge J (eds) Plant-parasitic nematodes in subtropical and tropical agriculture. Cabi, Wallingford, pp 319–392

    Google Scholar 

  57. Silva JBC, Giordano LB, Furumoto O, Boiteux LS, França FH, Bôas GLV, Branco MC, Medeiros MA, Marouelli W, Silva WLC, Lopes CA, Ávila AC, Nascimento WM, Pereira W (2006) Cultivo de tomate para industrialização. https://sistemasdeproducao.cnptia.embrapa.br/FontesHTML/Tomate/TomateIndustrial_2ed/autores.htm Accessed: 15 march 2020.

  58. Silva MCL, Santos CDG, Silva GS (2016) Espécies de Meloidogyne associada a vegetais em microrregiões do estado do Ceará. Rev Ciênc Agron 47:710–719. https://doi.org/10.5935/1806-6690.20160085

    Article  Google Scholar 

  59. Smant G, Helder J, Goverse A (2018) Parallel adaptations and common host cell responses enabling feeding of obligate and facultative plant parasitic nematodes. Plant J 93:686–702. https://doi.org/10.1111/tpj.13811

    CAS  Article  PubMed  Google Scholar 

  60. Taylor AL, Sasser JN (1978) Biology, identification and control of root-knot nematodes (Meloidogyne species). NCSU & USAID Coop Publ, Raleigh

    Google Scholar 

  61. Teixeira CT, Oliveira DC, Kuster VC, Isaias RMS (2018) Immunocytochemical demonstration of cell wall components related to tissue compartments in the globoid galls induced by Clinodiplosis sp. (Cecidomyiidae) on Croton floribundus Spreng. (Euphorbiaceae). Botany 96:9–18. https://doi.org/10.1139/cjb-2017-0123

    CAS  Article  Google Scholar 

  62. Vieira P, Escudero C, Rodiuc N, Boruc J, Russinova E, Glab N et al (2013) Ectopic expression of Kip-related proteins restrains root-knot nematode-feeding site expansion. New Phytol 199:505–5019. https://doi.org/10.1111/nph.12255

    CAS  Article  PubMed  Google Scholar 

  63. Vilela RMIF, Martini VC, Gonçalves L d A, Kuster VC, Oliveira DC (2019) Structure and development of root gall induced by Meloidogyne javanica in Glycine max L. Semina: Série botânica 40:1033–1048. https://doi.org/10.5433/1679-0359.2019v40n3p1033

    Article  Google Scholar 

  64. Wieczorek K (2015) Cell wall alterations in nematode-infected roots. Adv Bot Res 73:61–90. https://doi.org/10.1016/bs.abr.2014.12.002

    Article  Google Scholar 

  65. Willats WGT, LimBerg G, Bucholt HC, Van Alebeek GJ, Benen J, Christensen TMIE et al (2000) Analysis of pectic epitopes recognised by hybridoma and phage display monoclonal antibodies using defined oligosaccharides, polysaccharides, and enzymatic degradation.charides e degradação enzimática. Carbohydr Res 327:309–320. https://doi.org/10.1016/S0008-6215(00)00039-2

    CAS  Article  PubMed  Google Scholar 

  66. Willats WGT, McCartney L, Mackie W (2001) Pectin: Cell biology and prospects for functional analysis. Plant Mol Biol 47:9–27. https://doi.org/10.1023/A:1010662911148

    CAS  Article  PubMed  Google Scholar 

  67. Williamson VM, Gleason CA (2003) Plant-nematode interactions. Curr Opin Plant Biol 6:327–333. https://doi.org/10.1016/S1369-5266(03)00059-1

    CAS  Article  PubMed  Google Scholar 

  68. Wolf S, Greiner S (2012) Growth control by cell wall pectins. Protoplasma 249:169–175. https://doi.org/10.1007/s00709-011-0371-5

    CAS  Article  Google Scholar 

  69. Zhang R, Feng YLH, Yuan HX, Dai JL, Cao AZ, Xing LP, Li HL (2016) Cereal cyst nematode resistance gene CreV effective against Heterodera filipjevi transferred from chromosome of 6VL Dasypyrum villosum to bread wheat. Mol Breed 36:122. https://doi.org/10.1007/s11032-016-0549-9

    CAS  Article  Google Scholar 

Download references

Availability of data and material

All data generated or analyzed during this study are included in this published article.

Funding

This study was financed in part Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG). The authors also thank Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for a DCO fellowship.

Author information

Affiliations

Authors

Contributions

DCO and RMIFV conceived and designed the research. RMIFV, CAM, and ACPF conducted the cultivation experiments and collected the agricultural traits. RMIFV, VCK, and DCO conducted the immunocytochemistry experiments. All the authors wrote the manuscript.

Corresponding author

Correspondence to Denis Coelho de Oliveira.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Consent to participate

All authors agree with the participation.

Consent to publication

All authors agree with the publication.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Handling Editor: David McCurdy

Supplementary Information

ESM 1

(DOCX 19 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vilela, R.M.I.F., Kuster, V.C., Magalhães, T.A. et al. Impact of Meloidogyne incognita (nematode) infection on root tissues and cell wall composition of okra (Abelmoschus esculentus L. Moench, Malvaceae). Protoplasma (2021). https://doi.org/10.1007/s00709-021-01618-0

Download citation

Keywords

  • Cultivated plants
  • Giant cells
  • Pectin
  • Root-knot nematode