Diversity of petals in Berberidaceae: development, micromorphology, and structure of floral nectaries

Abstract

Petals are important floral organs that exhibit considerable morphological diversity in terms of colour, shape, and size. The varied morphologies of mature petals can be linked to developmental differences. The petals of Berberidaceae (a core group of Ranunculales) range from flat sheets to complex structures with nectaries, but studies on petal development and structural diversity in this group are lacking. Here, the petal development, structure, and micromorphology of seven Berberidaceae genera are characterized by microscopy to clarify the diversity of petals within this group. The results indicate that no common petal-stamen primordium exists, that petal development proceeds through five stages, and that the differentiation responsible for the diversity of the mature petals occurs during stage 4. Processes contributing to the morphological diversity of mature petals include edge thickening, gland formation, and spur formation. Nandina and Diphylleia lack nectaries. Gymnospermium has saccate nectaries, Caulophyllum has nectaries on the petal margin, Epimedium has spur nectaries, and Berberis and Mahonia have glands at the base of petals. Petal nectaries usually consist of a secretory epidermis, two to twenty layers of secretory parenchyma cells, and vascular tissues. Eleven distinct cell types were observed in the petal epidermis, three of which are secretory; papillose cells appear to be absent in Diphylleia, which shows relatively little micromorphological variation. The ancestors of Berberidaceae may have nectaries in thickened areas of their petals. The micromorphology and nectary structures of the petals in Ranunculales are also compared.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Antoń S, Kamińska M (2015) Comparative floral spur anatomy and nectar secretion in four representatives of Ranunculaceae. Protoplasma 252:1587–1601

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  2. Brett JF, Posluszny U (1982) Floral development in Caulophyllum thalictroides (Berberidaceae). Can J Bot 60:2133–2141. https://doi.org/10.1139/b82-262

    Article  Google Scholar 

  3. Carrive L, Domenech B, Sauquet H, Jabbour F, Damerval C, Nadot S (2020) Insights into the ancestral flowers of Ranunculales. Bot J Linn Soc 194:23–46

    Article  Google Scholar 

  4. Christensen KI, Hansen HV (1998) SEM-studies of epidermal patterns of petals in the angiosperms. Opera Botanica 135:1–91

    Google Scholar 

  5. Comba L, Corbet SA, Hunt H, Outram S, Parker JS, Glover BJ (2001) The role of genes influencing the corolla in pollination of Antirrhinum majus. Plant Cell Environ 23(6):639–647

  6. Cronquist A (1981) An integrated system of classification of flowering plants. Columbia University Press, New York

    Google Scholar 

  7. Dyer AG, Whitney HM, Arnold SEJ, Glover BJ, Chittka L (2006) Bees associate warmth with floral colour. Nature 442:525

    CAS  PubMed  Article  Google Scholar 

  8. Endress PK (1994) Diversity and evolutionary biology of tropical flower. Cambridge University Press, Cambridge

    Google Scholar 

  9. Endress PK (1995) Floral structure and evolution in Ranunculanae. Plant Syst Evol 9:47–61

    Google Scholar 

  10. Endress PK (2001) Origins of flower morphology. J Exp Zool 291:105–115

    CAS  PubMed  Article  Google Scholar 

  11. Endress PK (2010) Disentangling confusions in inflorescence morphology: patterns and diversity of reproductive shoot ramification in angiosperms. J Syst Evol 48:225–239

    Article  Google Scholar 

  12. Endress PK, Matthews ML (2006) Elaborate petals and staminodes in eudicots: diversity, function, and evolution. Org Divers Evol 6:257–293. https://doi.org/10.1016/j.ode.2005.09.005

    Article  Google Scholar 

  13. Erbar C (2014) Nectar secretion and nectaries in basal angiosperms, magnoliids and non-core eudicots and a comparison with core eudicots. Plant Divers Evol 131:63–143

    Article  Google Scholar 

  14. Erbar C, Leins P (2013) Nectar production in the pollen flower of Anemone nemorosa in comparison with other Ranunculaceae and Magnolia (Magnoliaceae). Org Divers Evol 13:287–300

    Article  Google Scholar 

  15. Erbar C, Kusma S, Leins P (1999) Development and interpretation of nectary organs in Ranunculaceae. Flora 194:317–332

    Article  Google Scholar 

  16. Fahn A (2002) Functions and location of secretory tissues in plants and their possible evolutionary trends. Israel J Plant Sci 50:S59–S64

    Article  Google Scholar 

  17. Feng M, Lu AM (1998) Floral organogenesis and its systematic significance of the genus Nandina (Berberidaceae). Acta Bot Sin 40:102–108

    Google Scholar 

  18. Glover BJ, Martin C (1998) The role of petal cell shape and pigmentation in pollination success in Antirrhinum majus. Heredity 80:778–784

    Article  Google Scholar 

  19. Guerrant EO (1982) Neotenic evolution of Delphinium nudicaule (Ranunculaceae): a hummingbird-pollinated larkspur. Evolution 36:699–712

    PubMed  Article  Google Scholar 

  20. Hansen HV (1991) Phylogenetic studies in Compositae tribe Mutisieae. Opera Botanica 109:1–50

    Google Scholar 

  21. Hansen HV (1992) Studies in the Calyceraceae with a discussion of its relationship to Compositae. Nord J Bot 12:63–75. https://doi.org/10.1111/j.1756-1051.1992.tb00202.x

    Article  Google Scholar 

  22. He HX, Zhang XL, Ren Y (2006) Floral variation in tepals, sterile and fertile stamens of Kingdonia uniflora (Ranunculaceae) with reference to pollinators and pollination. Acta Bot Yunnanica 28:371–377

    Google Scholar 

  23. Hiepko P (1965) Vergleichend - morphologische und entwicklungsgeschichtliche Untersuchungen über das Perianth bei den Polycarpicae. Botanische Jahrbücher für Systematik 84:359–508

  24. Irish VF (1998) Petal and stamen development. Curr Top Dev Biol 41:133–161

    Article  Google Scholar 

  25. Irish VF (2010) The flowering of Arabidopsis flower development. Plant J 61:1014–1028

    CAS  PubMed  Article  Google Scholar 

  26. Jabbour F, Renner SS (2012) Spurs in a spur: perianth evolution in the Delphinieae (Ranunculaceae). Int J Plant Sci 173:1036–1054

    Article  Google Scholar 

  27. Johnson MA, Eames AJ (1961) Morphology of the angiosperms. Bull Torrey Botanical Club 88:423–424

    Article  Google Scholar 

  28. Kampny CM, Harris EM (1998) Heterochrony: the basis of floral shape evolution. Am J Bot 4:449–460

    Google Scholar 

  29. Kay QON, Daoud HS (1981) Pigment distribution, light reflection and cell structure in petals. Bot J Linn Soc 83:57–84

    CAS  Article  Google Scholar 

  30. Kim YD, Kim SH, Kim CH, Jansen RK (2004) Phylogeny of Berberidaceae based on sequences of the chloroplast gene ndhF. Biochem Syst Ecol 32:291–301

    CAS  Article  Google Scholar 

  31. Konarska A, Masierowska M (2019) Structure of floral nectaries and female-biased nectar production in protandrous species Geranium macrorrhizum and Geranium phaeum. Protoplasma 1-23

  32. Kosuge K (1994) Petal evolution in Ranunculaceae. Plant Syst Evol 8:185–191

    Google Scholar 

  33. Kosuge K, Tamura M (1989) Ontogenetic studies on petals of the Ranunculaceae. J Botany 64:65–67

    Google Scholar 

  34. Li P, Johnston MO (2000) Heterochrony in plant evolutionary studies through the twentieth century. Bot Rev 66(1):57–88

    Article  Google Scholar 

  35. Liao H, Fu XH, Zhao HQ, Cheng J, Kong HZ (2020) The morphology, molecular development and ecological function of pseudonectaries on Nigella damascena (Ranunculaceae) petals. Nat Commun 11(1):1777. https://doi.org/10.1038/s41467-020-15658-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Liu N (2017) Developmental morphology of petals in Lardizabalaceae. MD Thesis, Shaanxi Normal University

  37. Liu XL, Li JH, Yang YF, Zhu JY (2017) Floral development of Gymnospermium microrrhynchum (Berberidaceae) and its systematic significance in the Nandinoideae. Flora 228:10–16. https://doi.org/10.1016/j.flora.2017.01.002

    Article  Google Scholar 

  38. McDonald DJ, van der Walt JJA (1992) Observations on the pollination of Pelargonium tricolor, section Campylia (Geraniaceae). S Afr J Bot 58:386–392

    Article  Google Scholar 

  39. Ning SX (2009) Floral development of Papaveraceae and its systematic significance. MD Thesis, Shaanxi Normal University

  40. Ojeda I, Francisco-Ortega J, Cronk QCB (2009) Evolution of petal epidermal micromorphology in Leguminosae and its use as a marker of petal identity. Ann Bot 104:1099–1110

    PubMed  PubMed Central  Article  Google Scholar 

  41. Ren Y, Li ZJ, Chang HL, Lei YJ, Lu AM (2004) Floral development of Kingdonia (Ranunculaceae s. l., Ranunculales). Plant Syst Evol 247:145–153. https://doi.org/10.1111/j.1095-8339.2009.01017.x

    Article  Google Scholar 

  42. Ren Y, Chang HL, Endress PK (2010) Floral development in Anemoneae (Ranunculaceae). Bot J Linn Soc 162:77–100

    Article  Google Scholar 

  43. Ren C, Yuan Q, Yang QE (2012) Cytological evidence supports the taxonomic status of the Sino-Himalayan species Cimicifuga frigida (Ranunculaceae). Nord J Bot 30:001–011

    Article  Google Scholar 

  44. Ronse De Craene LP (2007) Are petals sterile stamens or bracts? The origin and evolution of petals in the core eudicots. Ann Bot 100:621–630

    PubMed  PubMed Central  Article  Google Scholar 

  45. Ronse De Craene LP (2018) Understanding the role of floral development in the evolution of angiosperm flowers: clarifications from a historical and physico-dynamic perspective. J Plant Res 131:367–393

    PubMed  Article  Google Scholar 

  46. Stearn WT (1938) Epimedium and Vancouveria (Berberidaceae), a monograph. J Linn Soc London 51:409–535

    Article  Google Scholar 

  47. Stearn WT (1993) The small-flowered Chinese species of Epimedium (Berberidaceae). Kew Bulletin 48(4):807–813

  48. Sulborska A, Weryszko-Chmielewska E, Chwil M (2012) Micromorphology of Rosa rugosa Thunb. petal epidermis secreting fragrant substances. Acta Agrobot 65: 21–28

  49. Terabayashi S (1977) Study in morphology and systematics of Berberidaceae I: floral anatomy of Ranzania japonica. Jpn Soc Plant Syst 28:45–57

    Google Scholar 

  50. Wang Y (2016) Developmental morphology of petals in 5 genus of Menispermaceae. MD Thesis, Shaanxi Normal University

  51. Wang W, Chen ZD, Liu Y, Li RQ, Li JH (2007) Phylogenetic and biogeographic diversification of Berberidaceae in the northern hemisphere. Syst Bot 32:731–742

    Article  Google Scholar 

  52. Wang W, Lu AM, Ren Y, Endress ME, Chen ZD (2009) Phylogeny and classification of Ranunculales: evidence from four molecular loci and morphological data. Perspect Plant Ecol Evol Syst 11:81–110. https://doi.org/10.1016/j.ppees.2009.01.001

    Article  Google Scholar 

  53. Wang QJ, Yan XL, Zhao L, Zhang ZH, Ren Y (2018) Comparative studies on petals structure, micromorphology and ultrastructure in two species of Stephania (Menispermaceae). Plant Syst Evol 304:911–921

    Article  Google Scholar 

  54. Whitney HM, Kolle M, Andrew P, Chittka L, Steiner U, Glover BJ (2009) Floral iridescence, produced by diffractive optics, acts as a cue for animal pollinators. Science 323:130–133

    CAS  PubMed  Article  Google Scholar 

  55. Woodcock TS, Larson BM, Kevan PG, Inouye DW, Lunau K (2014) Flies and flowers II: floral attractants and rewards. J Pollination Ecol 12: 63–94

  56. Ye WQ, Yap ZY, Li P, Comes PH, Qing YX (2018) Plastome organization, genome-based phylogeny and evolution of plastid genes in Podophylloideae (Berberidaceae). Mol Phylogenet Evol 127:978–987. https://doi.org/10.1016/j.ympev.2018.07.001

    Article  PubMed  Google Scholar 

  57. Yin YY (2014) Micromorphology of the petal surface of Ranunculaceae. MD Thesis, Shaanxi Normal University

  58. Ying JS, Boufford DE, Brach AR (2001) Berberidaceae. Flora of China. vol. 19. Science Press and Missouri Botanical Garden Press, Beijing and St. Louis, pp. 251

  59. Ying JS, Boufford DE, Brach AR (2011) Berberidaceae. In: Wu ZY, Raven PH, Hong DY (eds) Flora of China, vol 19. Science Press and Missouri Botanical Garden Press, Beijing and St. Louis, pp 50–306

    Google Scholar 

  60. Zhang XH, Ren Y (2008) Floral morphology and development in Sargentodoxa (Lardizabalaceae). Int J Plant Sci 169:1148–1158

    Article  Google Scholar 

  61. Zhang XH, Zhao L (2018) Morphology, structure and ultrastructure of staminal nectary in Lamprocapnos (Fumarioideae, Papaveraceae). Flora 242:128–136. https://doi.org/10.1016/j.flora.2018.03.015

    Article  Google Scholar 

  62. Zhang XH, Sawhney VK, Davis AR (2014) Annular floral nectary with oil-producing trichomes in Salvia farinacea (Lamiaceae): anatomy, histochemistry, ultrastructure, and significance. Am J Bot 101:1849–l867

    PubMed  Article  Google Scholar 

  63. Zhao L, Liu P, Che XF, Wang W, Ren Y (2011) Floral organogenesis of Helleborus thibetanus and Nigella damascena (Ranunculaceae) and its systematic significance. Bot J Linn Soc 166:431–443. https://doi.org/10.1111/j.1095-8339.2011.01142.x

    Article  Google Scholar 

  64. Zhao L, Bachelier JB, Zhang XH, Ren Y (2016a) Floral organogenesis in Dysosma versipellis (Berberidaceae) and its systematic implications. Botany 94:359–368

    Article  Google Scholar 

  65. Zhao L, Gong JZ, Zhang XH, Liu YQ, Ma X, Ren Y (2016b) Floral organogenesis in Urophysa rockii, a rediscovered endangered and rare species of Ranunculaceae. Botany 94:215–224

    Article  Google Scholar 

Download references

Acknowledgments

We sincerely thank Dr. Julien B. Bachelier and three anonymous reviewers for providing valuable comments and suggestions. We are very grateful to Ms. Min-rong Luo of College of Horticulture, Northwest A&F University for assistance with LM. We are very grateful to Ms. Chun-qian Ren for analyzing ancestral state reconstruction.

Funding

This work was supported by the National Natural Science Foundation of China (No. 31770203, 31770200, 31100141, 31300158), the Fundamental Research Funds for the Central Universities (No. GK201603067, 2017155, 2452020179), and the Fundamental Research Funds for the Central Universities of Shaanxi Normal University (No. GK202002011).

Author information

Affiliations

Authors

Contributions

Xiao-hui Zhang designed research and critically revised the work. Shan Su contributed to data analysis and wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Xiao-hui Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Code availability

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Dorota Kwiatkowska

Supplementary information

ESM 1

(DOCX 19 kb)

ESM 2

(DOCX 18 kb)

ESM 3

(JPG 721 kb)

ESM 4

(JPG 841 kb)

ESM 5

(JPG 571 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Su, S., Zhao, L., Ren, Y. et al. Diversity of petals in Berberidaceae: development, micromorphology, and structure of floral nectaries. Protoplasma (2021). https://doi.org/10.1007/s00709-021-01611-7

Download citation

Keywords

  • Berberidaceae
  • Ranunculales
  • Development
  • Micromorphology
  • Nectary
  • Structure