Redox status regulation and action of extra- and intravascular defense mechanisms are associated with bean resistance against Fusarium oxysporum f. sp. phaseoli


Genetic resistance is the main strategy to control one of the most destructive diseases of common bean (Phaseolus vulgaris L), i.e., the Fusarium wilt caused by Fusarium oxysporum f. sp. phaseoli (Fop). However, little is known on host defense reactions in Fop-bean interaction. Thus, this work examined the defense mechanisms in root and hypocotyl tissues of common bean against Fop. Resistant and susceptible bean plants were inoculated by dipping their roots in a conidial suspension. Cross sections of roots and hypocotyls were observed in light microscopy at 1, 3, 6, and 9 days after inoculation (dai) to monitor Fop colonization, and at 3 and 9 dai to detect callose, carbohydrates, lipids, phenolics, and protein, and under electronic microscopy at 9 dai to observe ultrastructural changes in xylem cells. The content of hydrogen peroxide (H2O2), lipid peroxidation, and activity of the antioxidant enzymes ascorbate peroxidase (EC and catalase (EC were monitored spectrophotometrically in roots and hypocotyls at 0, 1, 3, 6, and 9 dai. Fop colonized inter- and intracellularly the epidermis and cortex reaching the xylem vessels faster in susceptible genotype. Fop inoculation induced phenolics and carbohydrates accumulation, callose deposition, and formation of occlusion material inside xylem vessels mainly in resistant genotype. Lipid peroxidation occurred mainly in susceptible plants. In contrast, the antioxidant enzymes seem to have contributed to reducing damage caused by H2O2 accumulation in resistant plants. This study gives evidences that inter- and intracellular physicochemical mechanisms can act together to delay Fop colonization in resistant plants.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8



Ascorbate peroxidase


Butylated hydroxytoluene




Coomassie brilliant blue


Cell wall apposition


Days after inoculation

Fop :

Fusarium oxysporum f. sp. phaseoli


Ferrous oxidation xylenol orange


Fresh weight


Fusarium wilt

H2O2 :

Hydrogen peroxide


Lipid hydroperoxide




Reactive oxygen species


Toluidine blue O


Trichloroacetic acid


  1. Alves-Santos FM, Cordeiro-Rodrigues L, Sayagués JM, Martín-Domínguez R, García-Benavides P, Crespo MC et al (2002) Pathogenicity and race characterization of Fusarium oxysporum f. sp. phaseoli isolates from Spain and Greece. Plant Pathol 51(5):605–611.

    Article  Google Scholar 

  2. An Q, Ehlers K, Kogel KH, Van Bel AJ, Hückelhoven R (2006) Multivesicular compartments proliferate in susceptible and resistant MLA12-barley leaves in response to infection by the biotrophic powdery mildew fungus. New Phytol 172(3):563–576.

    CAS  Article  PubMed  Google Scholar 

  3. Asselbergh B, Curvers K, França SC, Audenaert K, Vuylsteke M, Van Breusegem F, Höfte M (2007) Resistance to Botrytis cinerea in sitiens, an abscisic acid-deficient tomato mutant, involves timely production of hydrogen peroxide and cell wall modifications in the epidermis. Plant Physiol 144(4):1863–1877.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Bani M, Pérez-De-Luque A, Rubiales D, Rispail N (2018) Physical and chemical barriers in root tissues contribute to quantitative resistance to Fusarium oxysporum f sp pisi in pea. Front Plant Sci 9:199.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Beckman CH (1987) The nature of wilt diseases of plants. APS press

  6. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 72(1–2), 248–254.

  7. Buruchara RA, Camacho L (2000) Common bean reaction to Fusarium oxysporum f. sp. phaseoli, the cause of severe vascular wilt in Central Africa. J Phytopathol 148(1):39–45.

    Article  Google Scholar 

  8. de Borba MC, Garcés-Fiallos FR, Stadnik MJ (2017) Reactions of black bean seedlings and adult plants to infection by Fusarium oxysporum f. sp. phaseoli. Crop Prot 96:221–227.

    Article  Google Scholar 

  9. de Freitas, M. B., & Stadnik, M. J. (2015). Ulvan-induced resistance in Arabidopsis thaliana against Alternaria brassicicola requires reactive oxygen species derived from NADPH oxidase. Physiological and molecular plant pathology, 90, 49-56.

  10. de Quadros FM, Garcés-Fiallos FR, de Borba MC, de Freitas MB, Stadnik MJ (2019) Fusarium oxysporum affects differently the hydrogen peroxide levels and oxidative metabolism in susceptible and resistant bean roots. Physiol Mol Plant Pathol 106:1–6.

    CAS  Article  Google Scholar 

  11. Demarco, D. (2017). Histochemical analysis of plant secretory structures. In Histochemistry of Single Molecules (pp. 313–330). Humana Press, New York, NY.,

  12. Fernandez, F. O., Gepts, P. L., López Genes, M., & Arregocés, O. (1986). Stages of development of the common bean plant

  13. Garcés-Fiallos FR, de Borba MC, Schmidt ÉC, Bouzon ZL, Stadnik MJ (2017) Delayed upward colonization of xylem vessels is associated with resistance of common bean to Fusarium oxysporum f. sp. phaseoli. Eur J Plant Pathol 149(2):477–489.

    Article  Google Scholar 

  14. Garcia-Limones C, Hervás A, Navas-Cortés JA, Jimenezdiaz RM, Tena M (2002) Induction of an antioxidant enzyme system and other oxidative stress markers associated with compatible and incompatible interactions between chickpea (Cicer arietinum L.) and Fusarium oxysporum f. sp. ciceris. Physiol Mol Plant Pathol 61(6):325–337.

    CAS  Article  Google Scholar 

  15. García-Limones C, Dorado G, Navas-Cortés JA, Jiménez-Díaz RM, Tena M (2009) Changes in the redox status of chickpea roots in response to infection by Fusarium oxysporum f. sp. ciceris: apoplastic antioxidant enzyme activities and expression of oxidative stress-related genes. Plant Biol 11(2):194–203.

    CAS  Article  PubMed  Google Scholar 

  16. Griffiths G, Leverentz M, Silkowski H, Gill N, Sánchez-Serrano JJ (2000) Lipid hydroperoxide levels in plant tissues. J Exp Bot 51(349):1363–1370.

    CAS  Article  PubMed  Google Scholar 

  17. Gupta S, Bhar A, Chatterjee M, Das S (2013) Fusarium oxysporum f. sp. ciceri race 1 induced redox state alterations are coupled to downstream defense signaling in root tissues of chickpea (Cicer arietinum L.). PLoS One 8(9):e73163.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Hammond-Kosack KE, Jones JD (1996) Resistance gene-dependent plant defense responses. Plant Cell 8(10):1773–1791.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. He C, Hsiang T, Wolyn DJ (2001) Activation of defense responses to Fusarium infection in Asparagus densiflorus. Eur J Plant Pathol 107(5):473–483.

    CAS  Article  Google Scholar 

  20. Hilaire E, Young SA, Willard LH, McGee JD, Sweat T, Chittoor JM et al (2001) Vascular defense responses in rice: peroxidase accumulation in xylem parenchyma cells and xylem wall thickening. Mol Plant-Microbe Interact 14(12):1411–1419.

    CAS  Article  PubMed  Google Scholar 

  21. Malinovsky FG, Fangel JU, Willats WG (2014) The role of the cell wall in plant immunity. Front Plant Sci 5:178.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Mandal S, Mitra A, Mallick N (2008) Biochemical characterization of oxidative burst during interaction between Solanum lycopersicum and Fusarium oxysporum f. sp. lycopersici. Physiol Mol Plant Pathol 72(1–3):56–61.

    CAS  Article  Google Scholar 

  23. Modafar CE, Tantaoui A, Boustani EE (2000) Changes in cell wall-bound phenolic compounds and lignin in roots of date palm cultivars differing in susceptibility to Fusarium oxysporum f. sp. albedinis. J Phytopathol 148(7–8):405–411.

    Article  Google Scholar 

  24. Mueller MJ, Berger S (2009) Reactive electrophilic oxylipins: pattern recognition and signalling. Phytochemistry 70(13–14):1511–1521.

    CAS  Article  PubMed  Google Scholar 

  25. Newcombe G, Robb J (1989) The chronological development of a lipid-to-suberin response at Verticillium trapping sites in alfalfa. Physiol Mol Plant Pathol 34(1):55–73.

    Article  Google Scholar 

  26. Niño-Sánchez J, Tello V, Casado-del Castillo V, Thon MR, Benito EP, Díaz-Mínguez JM (2015) Gene expression patterns and dynamics of the colonization of common bean (Phaseolus vulgaris L.) by highly virulent and weakly virulent strains of Fusarium oxysporum. Front Microbiol 6:234.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ouellette GB, Baayen RP, Simard M, Rioux D (2002) Reactions of paratracheal cells of resistant and susceptible carnation (Dianthus caryophyllus) cultivars to vascular invasion by Fusarium oxysporum f. sp. dianthi. New Phytol 156(1):113–128.

    Article  Google Scholar 

  28. Pereira AC, Cruz MFA, Paula Júnior TJ, Rodrigues FA, Carneiro JES, Vieira RF, Carneiro PCS (2013) Infection process of Fusarium oxysporum f. sp. phaseoli on resistant, intermediate and susceptible bean cultivars. Tropical Plant Pathology 38(4):323–328.

    Article  Google Scholar 

  29. Pouralibaba HR, Pérez-de-Luque A, Rubiales D (2017) Histopathology of the infection on resistant and susceptible lentil accessions by two contrasting pathotypes of Fusarium oxysporum f. sp. lentis. Eur J Plant Pathol 148(1):53–63.

    CAS  Article  Google Scholar 

  30. Rizhsky L, Hallak-Herr E, Van Breusegem F, Rachmilevitch S, Barr JE, Rodermel S et al (2002) Double antisense plants lacking ascorbate peroxidase and catalase are less sensitive to oxidative stress than single antisense plants lacking ascorbate peroxidase or catalase. Plant J 32(3):329–342.

    CAS  Article  PubMed  Google Scholar 

  31. Rodriguez-Galvez E, Mendgen K (1995) The infection process of Fusarium oxysporum in cotton root tips. Protoplasma 189(1–2):61–72.

    Article  Google Scholar 

  32. Salgado MO, Schwartz HF, Brick MA (1995) Inheritance of resistance to a Colorado race of Fusarium oxysporum f. sp. phaseoli in common beans. Plant Dis 79(3):279–281.

    Article  Google Scholar 

  33. Shetty NP, Jørgensen HJL, Jensen JD, Collinge DB, Shetty HS (2008) Roles of reactive oxygen species in interactions between plants and pathogens. Eur J Plant Pathol 121(3):267–280.

    CAS  Article  Google Scholar 

  34. Simioni CC, Schmidt E, Felix MRDL, Polo LK, Rover T, Kreusch M et al (2014) Effects of ultraviolet radiation (UVA+ UVB) on young gametophytes of Gelidium floridanum: growth rate, photosynthetic pigments, carotenoids, photosynthetic performance, and ultrastructure. Photochem Photobiol 90(5):1050–1060.

    CAS  Article  PubMed  Google Scholar 

  35. Taheri P, Kakooee T (2017) Reactive oxygen species accumulation and homeostasis are involved in plant immunity to an opportunistic fungal pathogen. J Plant Physiol 216:152–163.

    CAS  Article  PubMed  Google Scholar 

  36. Torres MA (2010) ROS in biotic interactions. Physiol Plant 138(4):414–429.

    CAS  Article  PubMed  Google Scholar 

  37. van Schoonhoven, A. (1987). Standard system for the evaluation of bean germplasm. CIAT

  38. Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W (2010) Lignin biosynthesis and structure. Plant Physiol 153(3):895–905.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Xue R, Wu J, Zhu Z, Wang L, Wang X, Wang S, Blair MW (2015) Differentially expressed genes in resistant and susceptible common bean (Phaseolus vulgaris L.) genotypes in response to Fusarium oxysporum f. sp. phaseoli. PLoS One 10(6):e0127698.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. Xue R, Wu X, Wang Y, Zhuang Y, Chen J, Wu J, Ge W, Wang L, Wang S, Blair MW (2017) Hairy root transgene expression analysis of a secretory peroxidase (PvPOX1) from common bean infected by Fusarium wilt. Plant Sci 260:1–7.

    CAS  Article  PubMed  Google Scholar 

  41. Yadeta K, Thomma B (2013) The xylem as battleground for plant hosts and vascular wilt pathogens. Front Plant Sci 4:97.

    Article  PubMed  PubMed Central  Google Scholar 

Download references


We are grateful to the staff of the Multiuser Laboratory of Studies in Biology (LAMEB-UFSC), Central Laboratory of Electron Microscopy (LCME-UFSC), and Hydroponics Laboratory (LABHIDRO-UFSC) for their assistance, space, and equipment available in these laboratories. F.M.Q. is grateful for a master’s degree scholarship from CAPES/PROEX. M.J.S. is a research member of the National Council and Technological Development (CNPq).

Author information



Corresponding authors

Correspondence to Felipe M. de Quadros or Marciel J. Stadnik.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Ulrike Mathesius

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

de Quadros, F.M., de Freitas, M.B., Simioni, C. et al. Redox status regulation and action of extra- and intravascular defense mechanisms are associated with bean resistance against Fusarium oxysporum f. sp. phaseoli. Protoplasma (2020).

Download citation


  • Fusarium wilt
  • Disease resistance
  • Histochemical/fluorescence reactions
  • Cell ultrastructure
  • Defense mechanisms