Skip to main content
Log in

SlNAC2 overexpression in Arabidopsis results in enhanced abiotic stress tolerance with alteration in glutathione metabolism

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Plant NAC (NAM, ATAF, and CUC) transcription factors (TF) have important roles to play in abiotic stress responses through activation of a battery of functional genes/transcriptional regulators responsible for stress tolerance. Here we report the cloning of a novel Solanum lycopersicum L., NAC2 TF having 960 nucleotides long CDS (GenBank: KT740994.1). Phylogenetic analysis depicted the similarity of SlNAC2 to other orthologs. SlNAC2 was overexpressed in Arabidopsis thaliana to assess and characterize its role in plant abiotic stress responses. The transgenic events were first confirmed by genomic DNA PCR and qRT PCR; then the T3 generation plants were used for stress assays. Soil stress assay depicted better survivability of the transgenic plants under both salt (NaCl) and drought (PEG) stress. The transgenic plants showed enhanced endurance; with better antioxidative response, reduced accumulation of reactive oxygen species (ROS) molecules and better retention of water in tissue. This study for the very first time analyzed the different stakeholders of the glutathione metabolism in SlNAC2 overexpressing transgenic lines on exposure to both salinity and PEG stress. The expression of the two genes (ɤ-ECS, GS) responsible for glutathione biosynthesis increased with SlNAC2 overexpression. Further glutathione reductase responsible for reduction of glutathione disulfide (GSSG) to glutathione (GSH) also increased significantly which suggested the regulation of glutathione metabolism as a mechanism for the osmotic stress tolerance conferred to plants upon NAC overexpression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abbasi AR, Hajirezaei M, Hofius D, Sonnewald U, Voll LM (2007) Specific roles of α-and γ-tocopherol in abiotic stress responses of transgenic tobacco. Plant Physiol 143(4):1720–1738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M (1997) Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell 9(6):841–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alavilli H, Awasthi JP, Rout GR, Sahoo L, Lee BH, Panda SK (2016) Overexpression of a barley aquaporin gene, HvPIP2; 5 confers salt and osmotic stress tolerance in yeast and plants. Front Plant Sci 7:1566

    Article  PubMed  PubMed Central  Google Scholar 

  • An X, Liao Y, Zhang J, Dai L, Zhang N, Wang B, Liu L, Peng D (2015) Overexpression of rice NAC gene SNAC1 in ramie improves drought and salt tolerance. Plant Growth Regul 76(2):211–223

    Article  CAS  Google Scholar 

  • Anderson ME (1985) [70] Determination of glutathione and glutathione disulfide in biological samples. Methods Enzymol 113:548–555

    Article  CAS  PubMed  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24(1):1

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39(1):205–207

    Article  CAS  Google Scholar 

  • Chance B, Maehly AC (1955) Assay of catalases and peroxidases. Methods Enzymol 2:764–775

    Article  Google Scholar 

  • Chen S, Songkumarn P, Liu J, Wang GL (2009) A versatile zero background T-vector system for gene cloning and functional genomics. Plant Physiol 150(3):1111–1121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen S, Cui X, Chen Y, Gu C, Miao H, Gao H, Chen F, Liu Z, Guan Z, Fang W (2011) CgDREBa transgenic chrysanthemum confers drought and salinity tolerance. Environ Exp Bot 74:255–260

    Article  CAS  Google Scholar 

  • Chen W, Yao Q, Patil GB, Agarwal G, Deshmukh RK, Lin L, ..., Xu D (2016) Identification and comparative analysis of differential gene expression in soybean leaf tissue under drought and flooding stress revealed by RNA-Seq. Front Plant Sci 7:1044

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743

    Article  CAS  PubMed  Google Scholar 

  • Cuartero J, Bolarin MC, Asins MJ, Moreno V (2006) Increasing salt tolerance in the tomato. J Exp Bot 57(5):1045–1058

    Article  CAS  PubMed  Google Scholar 

  • Cunhua S, Wei D, Xiangling C, Xinna X, Yahong Z, Dong S, Jianjie S (2010) The effects of drought stress on the activity of acid phosphatase and its protective enzymes in pigweed leaves. Afr J Biotechnol 9(6):825–833

    Article  Google Scholar 

  • Elstner EF, Heupel A (1976) Inhibition of nitrite formation from hydroxylammoniumchloride: a simple assay for superoxide dismutase. Anal Biochem 70(2):616–620

    Article  CAS  PubMed  Google Scholar 

  • Fujita M, Fujita Y, Maruyama K, Seki M, Hiratsu K, Ohme-Takagi M, Tran LSP, Yamaguchi-Shinozaki K, Shinozaki K (2004) A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J 39(6):863–876

    Article  CAS  PubMed  Google Scholar 

  • Gattiker A, Gasteiger E, Bairoch AM (2002) ScanProsite: a reference implementation of a PROSITE scanning tool. Appl Bioinforma 1(2):107–108

    CAS  Google Scholar 

  • Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Glob Planet Chang 63(2–3):90–104

    Article  Google Scholar 

  • Giraud E, Ho LH, Clifton R, Carroll A, Estavillo G, Tan YF et al (2008) The absence of ALTERNATIVE OXIDASE1a in Arabidopsis results in acute sensitivity to combined light and drought stress. Plant Physiol 147(2):595–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta AS, Heinen JL, Holaday AS, Burke JJ, Allen RD (1993) Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase. Proc Natl Acad Sci 90(4):1629–1633

  • Han X, He G, Zhao S, Guo C, Lu M (2012) Expression analysis of two NAC transcription factors PtNAC068 and PtNAC154 from poplar. Plant Mol Biol Report 30(2):370–378

    Article  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125(1):189–198

  • Hell R, Bergmann L (1990) λ-Glutamylcysteine synthetase in higher plants: catalytic properties and subcellular localization. Planta 180(4):603

    Article  CAS  PubMed  Google Scholar 

  • Hofmann KAWS (1993) TMbase-A database of membrane spanning proteins segments. Biol Chem Hoppe Seyler 374:166

    Google Scholar 

  • Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci 103(35):12987–12992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwase A, Hideno A, Watanabe K, Mitsuda N, Ohme-Takagi M (2009) A chimeric NST repressor has the potential to improve glucose productivity from plant cell walls. J Biotechnol 142(3–4):279–284

    Article  CAS  PubMed  Google Scholar 

  • Jyothishwaran G, Kotresha D, Selvaraj T, Srideshikan SM, Rajvanshi PK, Jayabaskaran C (2007) A modified freeze–thaw method for efficient transformation of agrobacterium tumefaciens. Curr Sci 93(6):770–772

    CAS  Google Scholar 

  • Kar M, Mishra D (1976) Catalase, Peroxidase, and Polyphenoloxidase Activities duringRice Leaf Senescence. Plant Physiol 57(2):315–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landi S, Nurcato R, De Lillo A, Lentini M, Grillo S, Esposito S (2016) Glucose-6-phosphate dehydrogenase plays a central role in the response of tomato (Solanum lycopersicum) plants to short and long-term drought. Plant Physiol Biochem 105:79–89

    Article  CAS  PubMed  Google Scholar 

  • Liu G, Li X, Jin S, Liu X, Zhu L, Nie Y, Zhang X (2014) Overexpression of rice NAC gene SNAC1 improves drought and salt tolerance by enhancing root development and reducing transpiration rate in transgenic cotton. PLoS One 9(1):e86895

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu X, Zhang S, Whitworth RJ, Stuart JJ, Chen MS (2015) Unbalanced activation of glutathione metabolic pathways suggests potential involvement in plant defense against the gall midge Mayetiola destructor in wheat. Sci Rep 5:8092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao X, Zhang H, Qian X, Li A, Zhao G, Jing R (2012) TaNAC2, a NAC-type wheat transcription factor conferring enhanced multiple abiotic stress tolerances in Arabidopsis. J Exp Bot 63(8):2933–2946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao C, Lu S, Lv B, Zhang B, Shen J, He J, …, Ming F (2017) A rice NAC transcription factor promotes leaf senescence via ABA biosynthesis. Plant Physiol pp-00542

  • Mao C, Ding J, Zhang B, Xi D, Ming F (2018) Os NAC 2 positively affects salt-induced cell death and binds to the Os AP 37 and Os COX 11 promoters. Plant J 94(3):454–468

    Article  CAS  PubMed  Google Scholar 

  • Miller GAD, Suzuki N, Ciftci-Yilmaz SULTAN, Mittler RON (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33(4):453–467

    Article  CAS  PubMed  Google Scholar 

  • Mitsuda N, Iwase A, Yamamoto H, Yoshida M, Seki M, Shinozaki K, Ohme-Takagi M (2007) NAC transcription factors, NST1 and NST3, are key regulators of the formation of secondary walls in woody tissues of Arabidopsis. Plant Cell 19(1):270–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molinari HBC, Marur CJ, Daros E, De Campos MKF, De Carvalho JFRP, Filho JCB, ..., Vieira LGE (2007) Evaluation of the stress-inducible production of proline in transgenic sugarcane (Saccharum spp.): osmotic adjustment, chlorophyll fluorescence and oxidative stress. Physiol Plant, 130(2):218–229

  • Nakashima K, Takasaki H, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) NAC transcription factors in plant abiotic stress responses. Biochim Biophys Acta 1819(2):97–103

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Gomez L, Vanacker H, Foyer CH (2002) Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signalling. J Exp Bot 53(372):1283–1304

    Article  CAS  PubMed  Google Scholar 

  • Nuruddin MM, Madramootoo CA, Dodds GT (2003) Effects of water stress at different growth stages on greenhouse tomato yield and quality. HortScience 38(7):1389–1393

    Article  Google Scholar 

  • Ohnishi T, Sugahara S, Yamada T, Kikuchi K, Yoshiba Y, Hirano HY, Tsutsumi N (2005) OsNAC6, a member of the NAC gene family, is induced by various stresses in rice. Genes Genet Syst 80(2):135–139

    Article  CAS  PubMed  Google Scholar 

  • Oser BL (1979) Hawks Physiological Chemistry. McGraw Hill, NY, pp 702–705 ISBN 0-07-099490-0.

    Google Scholar 

  • Petrov V, Hille J, Mueller-Roeber B, Gechev TS (2015) ROS-mediated abiotic stress-induced programmed cell death in plants. Front Plant Sci 6:69

    Article  PubMed  PubMed Central  Google Scholar 

  • Qi S, Lin Q, Zhu H, Gao F, Zhang W, Hua X (2016) The RING finger E3 ligase SpRing is a positive regulator of salt stress signaling in salt-tolerant wild tomato species. Plant Cell Physiol 57(3):528–539

    Article  CAS  PubMed  Google Scholar 

  • Rabara RC, Tripathi P, Rushton PJ (2014) The potential of transcription factor-based genetic engineering in improving crop tolerance to drought. OMICS 18(10):601–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramel F, Sulmon C, Bogard M, Couée I, Gouesbet G (2009) Differential patterns of reactive oxygen species and antioxidative mechanisms during atrazine injury and sucrose-induced tolerance in Arabidopsis thaliana plantlets. BMC Plant Biol 9(1):28

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ranjan A, Ichihashi Y, Sinha NR (2012) The tomato genome: implications for plant breeding, genomics and evolution. Genome Biol 13(8):167

    Article  PubMed  PubMed Central  Google Scholar 

  • Rao MV, Davis KR (1999) Ozone-induced cell death occurs via two distinct mechanisms in Arabidopsis: the role of salicylic acid. Plant J 17(6):603–614

    Article  CAS  PubMed  Google Scholar 

  • Sagisaka S (1976) The occurrence of peroxide in a perennial plant, Populus gelrica. Plant Physiol 57(2):308–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao H, Wang H, Tang X (2015) NAC transcription factors in plant multiple abiotic stress responses: progress and prospects. Front Plant Sci 6:902

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen J, Lv B, Luo L, He J, Mao C, Xi D, Ming F (2017) The NAC-type transcription factor OsNAC2 regulates ABA-dependent genes and abiotic stress tolerance in rice. Sci Rep 7:40641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheng SY, Wu YX, Zheng YS (2017) Review on drought response in plants from phenotype to molecular. Curr Biotechnol 7(3):169–176

    Google Scholar 

  • Smart RE, Bingham GE (1974) Rapid estimates of relative water content. Plant Physiol 53(2):258–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith IK, Vierheller TL, Thorne CA (1988) Assay of glutathione reductase in crude tissue homogenates using 5, 5′-dithiobis (2-nitrobenzoic acid). Anal Biochem 175(2):408–413

    Article  CAS  PubMed  Google Scholar 

  • Solankey SS, Singh RK, Baranwal DK, Singh DK (2015) Genetic expression of tomato for heat and drought stress tolerance: an overview. Int J Veg Sci 21(5):496–515. https://doi.org/10.1080/19315260.2014.902414

    Article  Google Scholar 

  • Souer E, van Houwelingen A, Kloos D, Mol J, Koes R (1996) The no apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell 85(2):159–170

    Article  CAS  PubMed  Google Scholar 

  • Thirumalaikumar VP, Devkar V, Mehterov N, Ali S, Ozgur R, Turkan I, Mueller-Roeber B, Balazadeh S (2018) NAC transcription factor JUNGBRUNNEN 1 enhances drought tolerance in tomato. Plant Biotechnol J 16(2):354–366

    Article  CAS  PubMed  Google Scholar 

  • Todaka D, Shinozaki K, Yamaguchi-Shinozaki K (2015) Recent advances in the dissection of drought-stress regulatory networks and strategies for development of drought-tolerant transgenic rice plants. Front Plant Sci 6:84

    Article  PubMed  PubMed Central  Google Scholar 

  • Tran LSP, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Maruyama K et al (2004) Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell 16(9):2481–2498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tran LSP, Quach TN, Guttikonda SK, Aldrich DL, Kumar R, Neelakandan A, Valliyodan B, Nguyen HT (2009) Molecular characterization of stress-inducible GmNAC genes in soybean. Mol Gen Genomics 281(6):647–664

    Article  CAS  Google Scholar 

  • Vermeirssen V, De Clercq I, Van Parys T, Van Breusegem F, Van de Peer Y (2014) Arabidopsis ensemble reverse-engineered gene regulatory network discloses interconnected transcription factors in oxidative stress. Plant Cell 26:4656–4679 tpc-114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang CL, Oliver DJ (1996) Cloning of the cDNA and genomic clones for glutathione synthetase from Arabidopsis thaliana and complementation of agsh2 mutant in fission yeast. Plant Mol Biol 31(6):1093–1104

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218(1):1–14

    Article  CAS  PubMed  Google Scholar 

  • Wu D, Sun Y, Wang H, Shi H, Su M, Shan H, Li T, Li Q (2018) The SlNAC8 gene of the halophyte Suaeda liaotungensis enhances drought and salt stress tolerance in transgenic Arabidopsis thaliana. Gene 662:10–20

    Article  CAS  PubMed  Google Scholar 

  • Xiong L, Zhu JK (2002) Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ 25(2):131–139

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Yao X, Lu L, Zhao D (2018) Overexpression of the transcription factor NtNAC2 confers drought tolerance in tobacco. Plant Mol Biol Report 1–10

  • Yadav SK, Singla-Pareek SL, Reddy MK, Sopory SK (2005) Transgenic tobacco plants overexpressing glyoxalase enzymes resist an increase in methylglyoxal and maintain higher reduced glutathione levels under salinity stress. FEBS Lett 579(27):6265–6271

    Article  CAS  PubMed  Google Scholar 

  • Zhong H, Guo QQ, Chen L, Ren F, Wang QQ, Zheng Y, Li XB (2012) Two Brassica napus genes encoding NAC transcription factors are involved in response to high-salinity stress. Plant Cell Rep 31(11):1991–2003

    Article  CAS  PubMed  Google Scholar 

  • Zhu M, Chen G, Zhang J, Zhang Y, Xie Q, Zhao Z, Pan Y, Hu Z (2014) The abiotic stress-responsive NAC-type transcription factor SlNAC4 regulates salt and drought tolerance and stress-related genes in tomato (Solanum lycopersicum). Plant Cell Rep 33(11):1851–1863

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

PB sincerely thank UGC, New Delhi, India, for providing Non-NET fellowship throughout the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjib Kumar Panda.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Néstor Carrillo

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 15 kb)

ESM 2

(DOCX 85 kb)

ESM 3

(DOCX 177 kb)

ESM 4

(DOCX 264 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borgohain, P., Saha, B., Agrahari, R. et al. SlNAC2 overexpression in Arabidopsis results in enhanced abiotic stress tolerance with alteration in glutathione metabolism. Protoplasma 256, 1065–1077 (2019). https://doi.org/10.1007/s00709-019-01368-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-019-01368-0

Keywords

Navigation