Skip to main content

Advertisement

Log in

Lectin-binding and dissociation/reconstitution studies on the trichocysts of the dinoflagellate Oxyrrhis marina

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Trichocyst-enriched fractions were isolated from the dinoflagellate Oxyrrhis marina and subjected to protein staining and lectin-binding studies, to dissociation experiments using heat, and to solubilization/reconstitution experiments using 6 M guanidine hydrochloride. The trichocysts could be stained by Alcian Blue and became labeled by the lectin Concanavalin A, but not by wheat germ agglutinin. The trichocysts did not dissociate when the fractions were heated for 5 min at 40 or 50 °C. Heating at 60 °C resulted in the dissociation of trichocysts into irregular filamentous structures. These filaments were still present when the fractions were incubated for 5 min at temperatures of 70 and 80 °C. Reassembly was not achieved by subsequent cooling steps. The disintegration of trichocysts was also achieved in 6 M guanidine hydrochloride, and reassembly into filamentous structures, similar to those obtained by heat, occurred after dialysis against distilled water. Electron microscopy revealed that the filaments created either by heat or using guanidine hydrochloride by far did not resemble native trichocysts. They were much thinner (5–7 nm in width), missed the characteristic striation of electron-dense and -transparent lines along the longitudinal axes, and showed much more bending. Furthermore, they tend to merge to thicker shapeless structures and blob-like aggregates. Sodium dodecyl sulfate polyacrylamide gel electrophoresis revealed that fractions enriched either in trichocysts or in reconstituted filamentous structures obtained in the guanidine hydrochloride solubilization experiments were dominated by proteins with relative molecular weights in the range of approximately 15 to 29 kDa. Minor amounts of larger proteins were also detected. Tryptic in gel digestion followed by mass spectrometry confirmed the presence of almost the same set of proteins within the both, the trichocyst-enriched fractions, and the fractions of filaments reconstituted thereafter. These proteins were previously proposed to represent the matrix polypeptides of the trichocysts of Oxyrrhis marina (Rhiel et al., Protoplasma 255: 217–230, 2018).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ammermann S, Schneider T, Westermann M, Hillebrand H, Rhiel E (2013) Ejectisins: tough and tiny polypeptides are a major component of cryptophycean ejectisomes. Protoplasma 250:551–563

    Article  PubMed  CAS  Google Scholar 

  • Ammermann S, Hillebrand H, Rhiel E (2014) Further investigations on the polypeptides and reconstitution of prasinophycean ejectisomes. Eur J Protistol 50:248–257

    Article  PubMed  Google Scholar 

  • Bannister LH (1972) The structure of trichocysts in Paramecium caudatum. J Cell Sci 11:899–929

    PubMed  CAS  Google Scholar 

  • Bathke L, Rhiel E, Krumbein WE, Marquardt J (1999) Biochemical and immunochemical investigations on the light-harvesting system of the cryptophyte Rhodomonas sp.: evidence for a photosystem I specific antenna. Plant Biol 1:516–523

    Article  CAS  Google Scholar 

  • Dodge JD, Crawford RM (1971) Fine structure of the dinoflagellate Oxyrrhis marina. I The general structure of the cell. Protistologica 7:295–303

    Google Scholar 

  • Eperon S, Peck RK (1988) Structural and biochemical characterization of isolated trichocysts of the ciliate Pseudomicrothorax dubius. J Protozool 35:280–286

    Article  CAS  Google Scholar 

  • Gautier M-C, Sperling L, Madeddu L (1996) Cloning and sequence analysis of genes coding for Paramecium secretory granule (trichocyst) proteins. J Biol Chem 271:10247–10255

    Article  PubMed  CAS  Google Scholar 

  • Glas-Albrecht R, Plattner H (1990) High yield isolation procedure for intact organelles (trichocysts) from different Paramecium tetraurelia strains. Eur J Cell Biol 53:164–172

    PubMed  CAS  Google Scholar 

  • Glas-Albrecht R, Németh A, Plattner H (1990) Secretory proteins and glycoproteins from Paramecium cells. Eur J Protistol 26:149–159

    Article  PubMed  CAS  Google Scholar 

  • Glas-Albrecht R, Schlosser V, Plattner H (1992) Isolation of the membranes from secretory organelles (trichocysts) of Paramecium tetraurelia. Biochim Biophys Acta 1103:1–7

    Article  PubMed  CAS  Google Scholar 

  • Guillard RRL, Ryther JH (1962) Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervaceae (Cleve) Gran. Can J Microbiol 8:229–239

    Article  PubMed  CAS  Google Scholar 

  • Haacke-Bell B, Plattner H (1987) Secretory lectins contained in trichocyst tips pf Paramecium. Eur J Cell Biol 44:1–9

    Google Scholar 

  • Hausmann K (1973) Cytologische Studien an Trichocysten. VI Feinstruktur und Funktionsmodus der Trichocysten des Flagellaten Oxyrrhis marina und des Ciliaten Pleuronema marinum. Helgoländer wiss Meeresunters 25:39–62

  • Keeling PJ, Burki F, Wilcox HM, Allam B, Allen EE, Amaral-Zettler LA, Armbrust EV, Archibald JM, Bharti AK, Bell CJ, Beszteri B, Bidle KD, Cameron CT, Campbell L, Caron DA, Cattolico RA, Collier JL, Coyne K, Davy SK, Deschamps P, Dyhrman ST, Edvardsen B, Gates RD, Gobler CJ, Greenwood SJ, Guida SM, Jacobi JL, Jakobsen KS, James ER, Jenkins B, John U, Johnson MD, Juhl AR, Kamp A, Katz LA, Keine R, Kudryavtsev A, Leander BS, Lin S, Lovejoy C, Lynn D, Marchetti A, McManus G, Nedelcu AM, Menden-Deuer S, Miceli C, Mock T, Montresor M, Moran MA, Murray S, Nadathur G, Nagai S, Ngam PB, Palenik B, Pawlowski J, Petroni G, Piganeau G, Posewitz MC, Rengefors K, Romano G, Rumpho ME, Rynearson T, Schilling KB, Schroeder DC, Simpson AGB, Slamovits CH, Smith DR, Smith GJ, Smith SR, Sosik HM, Stief P, Theriot E, Twary SN, Umale PE, Vaulot D, Wawrik B, Wheeler GL, Wilson WH, Xu Y, Zingone A, Worden AZ (2014) The marine microbial eukaryote transcriptome sequencing project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLoS Biol 12:e1001889

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during assembly of head of bacteriophage T7. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lüthe N, Plattner H, Haake B, Walther P, Müller M (1986) Lectin binding sites in Paramecium tetraurelia cells. I Labeling analysis predominantly of secretory components. Histochemistry 85:365–376

    Article  PubMed  Google Scholar 

  • Madeddu L, Gautier M-C, Vayssie L, Houari A, Sperling L (1995) A large multigene family codes for the polypeptides of the crystalline trichocyst matrix in Paramecium. Mol Biol Cell 6:649–659

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peterson JB, Heuser JE, Nelson DL (1987) Dissociation and reassociation of trichocyst proteins: biochemical and ultrastructural studies. J Cell Sci 87:3–25

    PubMed  CAS  Google Scholar 

  • Plattner H (2017) Trichocysts—Paramecium’s projectile-like secretory organelles. Reappraisal of their biogenesis, composition, intracellular transport, and possible functions. J Eukaryot Microbiol 64:106–133

    Article  PubMed  CAS  Google Scholar 

  • Rhiel E (2017) On the extrusomes of Oxyrrhis marina (Dinophyceae). Protoplasma 254:901–909

    Article  PubMed  Google Scholar 

  • Rhiel E, Wöhlbrand L, Rabus R, Voget S (2018) Candidates of trichocyst matrix proteins of the dinoflagellate Oxyrrhis marina. Protoplasma 255:217–230

    Article  PubMed  CAS  Google Scholar 

  • Roberts EC, Zubkov MV, Martin-Cereceda M, Novarino G, Wootton EC (2006) Cell surface lectin-binding glycoconjugates on marine planktonic protists. FEMS Microbiol Lett 265:202–207

    Article  PubMed  CAS  Google Scholar 

  • Rosati G, Modeo L (2003) Extrusomes in ciliates: diversification, distribution, and phylogenetic implications. J Eukaryot Microbiol 50:383–402

    Article  PubMed  Google Scholar 

  • Shih S-J, Nelson DL (1991) Multiple families of proteins in the secretory granules of Paramecium tetraurelia: immunological characterization and immunocytochemical localization of trichocyst proteins. J Cell Sci 100:85–97

    PubMed  CAS  Google Scholar 

  • Sperling L, Tardieu A, Gulik-Krzywicki T (1987) The crystal lattice of Paramecium trichocysts before and after exocytosis by X-ray diffraction and freeze-fracture electron microscopy. J Cell Biol 105:1649–1662

    Article  PubMed  CAS  Google Scholar 

  • Westermann M, Steiniger F, Gülzow N, Hillebrand H, Rhiel E (2015) Isolation and characterization of the trichocysts of the dinophyte Prorocentrum micans. Protoplasma 252:271–281

    Article  PubMed  CAS  Google Scholar 

  • Wöhlbrand L, Ruppersberg HS, Feenders C, Blasius B, Braun HP, Rabus R (2016) Analysis of membrane-protein complexes of the marine sulfate reducer Desulfobacula toluolica Tol2 by 1D blue native-PAGE complexome profiling and 2D blue native-/SDS-PAGE. Proteomics 16:973–988

    Article  PubMed  CAS  Google Scholar 

  • Wootton EC, Zubkov MV, Jones DH, Jones RH, Martel CM, Thornton CA, Roberts EC (2007) Biochemical prey recognition by planktonic protozoa. Environ Microbiol 9:216–222

    Article  PubMed  CAS  Google Scholar 

  • Yamagishi T, Kai A, Kawai H (2012) Trichocyst ribbons of a cryptomonads are constituted of homologs of R-body proteins produced by the intracellular parasitic bacterium of Paramecium. J Mol Evol 74:147–157

    Article  PubMed  CAS  Google Scholar 

  • Yamagishi T, Kurihara A, Kawai H (2015) A ribbon-like structure in the ejective organelle of the green microalga Pyramimonas parkeae (Prasinophyceae) consists of core histones and polymers containing N-acetyl-glucosamine. Protist 166:522–533

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to Silke Ammermann and Christina Hinrichs (both Oldenburg) for the excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erhard Rhiel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Reimer Stick

Electronic supplementary material

ESM 1

(XLSX 37 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rhiel, E., Wöhlbrand, L. & Rabus, R. Lectin-binding and dissociation/reconstitution studies on the trichocysts of the dinoflagellate Oxyrrhis marina. Protoplasma 256, 459–469 (2019). https://doi.org/10.1007/s00709-018-1308-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-018-1308-z

Keywords

Navigation