Skip to main content

Salt stress in rice: multivariate analysis separates four components of beneficial silicon action

Abstract

How many subcellular targets of the beneficial silicon effect do exist in salt-stressed rice? Here, we investigate the effects of silicon on the different components of salt stress, i.e., osmotic stress, sodium, and chloride toxicity. These components are separated by multivariate analysis of 18 variables measured in rice seedlings (Oryza sativa L.). Multivariate analysis can dissect vectors and extract targets as principal components, given the regressions between all variables are known. Consequently, the exploration of 153 correlations and 306 regression models between all variables is essential, and regression parameters for variables of shoot (silicon, sodium, chloride, carotenoids, chlorophylls a and b, and relative growth rate) and variables of shoot and root (hydrogen peroxide, ascorbate peroxidase (APX), catalase (CAT), fresh weight, dry weight, root-to-shoot ratio) are determined. The regression models [log (y) = y0 + a × log (x)] are confirmed by variance analysis of global goodness of fits (p < 0.0001). Thereby, logarithmic transformation yields linearization for multivariate analysis by Pearson’s correlation. Four principal components are extracted: two targets of osmotic stress, one target of sodium toxicity, and one target of chloride toxicity. Thereby, silicon improves salt tolerance by increasing APX and CAT activities and decreasing hydrogen peroxide, salt ion accumulation, photosynthetic pigment losses, and growth inhibition. Salt stress increases silicon uptake pointing to a physiological regulation of plant salt stress in the presence of silicon. This mechanism and its four components are promising targets for further agricultural application.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

ANOVA:

Analysis of variance

APX (10):

Ascorbate peroxidase

C-1, C-2, C-3, C-4:

Principal components determined by multivariate statistics

CAR (8):

Carotenoids

CAT (11):

Catalase

CHLA (6), CHLB (7):

Chlorophyll a, chlorophyll b

CL (13):

Shoot chloride

DW (16):

Dry weight

FW (15):

Fresh weight

Na (12):

Shoot sodium

PER (9):

Hydrogen peroxide

RAPX (4), RCAT (5), RDW (2), RFW (1), RPER (3):

Parameters as before measured in roots instead of shoots

RGR (18):

Relative growth rate of shoot

RS (17):

Root-to-shoot ratio

Si (14):

Shoot silicon

u:

Unit of enzymatic activity of APX and CAT measured as described in the section “Materials and methods

References

  1. Adams TF, Wongchai C, Chaidee A, Pfeiffer W (2016) “Singing in the tube”—audiovisual assay of plant oil repellent activity against mosquitoes (Culex pipiens). Parasitol Res 115:225–239

    Article  PubMed  Google Scholar 

  2. Agarie S, Hanaoka N, Ueno O, Miyazaki A, Kubota F, Agata W, Kaufman PB (1998) Effects of silicon on tolerance to water deficit and heat stress in rice plants (Oryza sativa L.), monitored by electrolyte leakage. Plant Prod Sci 1:96–103

    Article  Google Scholar 

  3. Al-aghabary K, Zhu Z, Shi Q (2005) Influence of silicon supply on chlorophyll content, chlorophyll fluorescence, and antioxidative enzyme activities in tomato plants under salt stress. J Plant Nutr 27:2101–2115

    Article  CAS  Google Scholar 

  4. Albacete A, Ghanem ME, Dodd IC, Alfocea FP (2010) Principal component analysis of hormone profiling data suggests an important role for cytokinins in regulating leaf growth and senescence of salinized tomato. Plant Signal Behav 5:45–48

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Arnon DI (1949) Copper enzymes in isolated chloroplasts. Plant Physiol 24:1–15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Ashraf M, Rahmatullah AR, Afzal M, Tahir MA, Kanwal S, Maqsood MA (2009) Potassium and silicon improve yield and juice quality in sugarcane (Saccharum officinarum L.) under salt stress. J Agron Crop Sci 195:284–291

    Article  CAS  Google Scholar 

  7. Barbier-Brygoo H, De Angeli A, Filleur S, Frachisse J-M, Gambale F, Thomine S, Wege S (2011) Anion channels/transporters in plants: from molecular bases to regulatory networks. Annu Rev Plant Biol 62:25–51

    Article  PubMed  CAS  Google Scholar 

  8. Beadle CL (1993) Growth analysis. In: Hall DO, Scurlock JMO, Bolhàr-Nordenkampf HR, Leegood RC, Long SP (eds) Photosynthesis and production in a changing environment: a field and laboratory manual. Springer, Dordrecht, pp 36–46

    Google Scholar 

  9. Beers RF, Sizer IW (1952) A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195:133–140

    PubMed  CAS  Google Scholar 

  10. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Brumós J, Colmenero-Flores JM, Conesa A, Izquierdo P, Sánchez G, Iglesias DJ, López-Climent MF, Gómez-Cadenas A, Talón M (2009) Membrane transporters and carbon metabolism implicated in chloride homeostasis differentiate salt stress responses in tolerant and sensitive Citrus rootstocks. Funct Integr Genomics 9:293–309

    Article  PubMed  CAS  Google Scholar 

  12. Caverzan A, Passaia G, Rosa SB, Ribeiro CW, Lazzarotto F, Margis-Pinheiro M (2012) Plant responses to stresses: role of ascorbate peroxidase in the antioxidant protection. Genet Mol Biol 35:1011–1019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Chew O, Whelan J, Millar AH (2003) Molecular definition of the ascorbate-glutathione cycle in Arabidopsis mitochondria reveals dual targeting of antioxidant defenses in plants. J Biol Chem 278:46869–46877

    Article  PubMed  Google Scholar 

  14. Chow W, Ball M, Anderson J (1990) Growth and photosynthetic responses of spinach to salinity: implications of K+ nutrition for salt tolerance. Aust J Plant Physiol 17:563–578

    CAS  Google Scholar 

  15. Curnow P, Senior L, Knight MJ, Thamatrakoln K, Hildebrand M, Booth PJ (2012) Expression, purification, and reconstitution of a diatom silicon transporter. Biochemistry 51:3776–3785

    Article  PubMed  CAS  Google Scholar 

  16. Currie HA, Perry CC (2007) Silica in plants: biological, biochemical and chemical studies. Ann Bot 100:1383–1389

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Dai W, Zhang KQ, Duan BW, Sun CX, Zheng KL, Cai RYZ (2005) Rapid determination of silicon content in rice. Rice Sci 12:145–147

    Google Scholar 

  18. Elliott CL, Snyder GH (1991) Autoclave-induced digestion for the colorimetric determination of silicon in rice straw. J Agric Food Chem 39:1118–1119

    Article  CAS  Google Scholar 

  19. Epstein E (1994) The anomaly of silicon in plant biology. Proc Natl Acad Sci U S A 91:11–17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Epstein E (1999) Silicon. Annu Rev Plant Physiol Plant Mol Biol 50:641–664

    Article  PubMed  CAS  Google Scholar 

  21. FAO, ITPS (2015) Status of the world’s soil resources (SWSR) – main report. Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils, Rome

  22. Farhangi-Abriz S, Torabian S (2018) Nano-silicon alters antioxidant activities of soybean seedling under salt toxicity. Protoplasma 255:953–962. https://doi.org/10.1007/s00709-017-1202-0

    Article  PubMed  CAS  Google Scholar 

  23. Fleck AT, Nye T, Repenning C, Stahl F, Zahn M, Schenk MK (2010) Silicon enhances suberization and lignification in roots of rice (Oryza sativa). J Exp Bot 62:2001–2011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Gong HJ, Randall DP, Flowers TJ (2006) Silicon deposition in the root reduces sodium uptake in rice (Oryza sativa L.) seedlings by reducing bypass flow. Plant Cell Environ 29:1970–1979

    Article  PubMed  CAS  Google Scholar 

  25. Grégoire C, Rémus-Borel W, Vivancos J, Labbé C, Belzile F, Bélanger RR (2012) Discovery of a multigene family of aquaporin silicon transporters in the primitive plant Equisetum arvense. Plant J 72:320–330

    Article  PubMed  CAS  Google Scholar 

  26. Guerriero G, Hausman J-F, Legay S (2016) Silicon and the plant extracellular matrix. Front Plant Sci 7:463. https://doi.org/10.3389/fpls.2016.00463 eCollection 2016

    Article  PubMed  PubMed Central  Google Scholar 

  27. HACH Company (1988) DR/2000 spectrophotometer procedures manual. Loveland, Colorado, pp 103–105

    Google Scholar 

  28. Haefele SM, Naklang K, Harnpichitvitaya D, Jearakongman S, Skulkhu E, Romyen P, Phasopa S, Tabtim S, Suriya-arunroj D, Khunthasuvon S, Kraisorakul D, Youngsuk P, Amarante ST, Wade LJ (2006) Factors affecting rice yield and fertilizer response in rainfed lowlands of northeast Thailand. Field Crops Res 98:39–51

    Article  Google Scholar 

  29. Homblé F, Krammer E-M, Prévost M (2012) Plant VDAC: facts and speculations. Biochim Biophys Acta 1818:1486–1501

    Article  PubMed  CAS  Google Scholar 

  30. Isa M, Bai S, Yokoyama T, Ma JF, Ishibashi Y, Yuasa T, Iwaya-Inoue M (2010) Silicon enhances growth independent of silica deposition in a low-silica rice mutant, lsi1. Plant Soil 331:361–375

    Article  CAS  Google Scholar 

  31. Jana S, Choudhuri MA (1982) Glycolate metabolism of three submersed aquatic angiosperms during ageing. Aquat Bot 12:345–354

    Article  CAS  Google Scholar 

  32. Kafi M, Nabati J, Masoumi A, Mehrgerdi MZ (2011) Effect of salinity and silicon application on oxidative damage of sorghum [Sorghum bicolor (L.) Moench.]. Pak J Bot 43:2457–2462

    CAS  Google Scholar 

  33. Kronzucker HJ, Szczerba MW, Moazami-Goudarzi M, Britto DT (2006) The cytosolic Na+:K+ ratio does not explain salinity-induced growth impairment in barley: a dual-tracer study using 42K+ and 24Na+. Plant Cell Environ 29:2228–2237

    Article  PubMed  CAS  Google Scholar 

  34. Lanning FC (1963) Plant constituents, silicon in rice. J Agric Food Chem 11:435–437

    Article  CAS  Google Scholar 

  35. Liang Y (1999) Effects of silicon on enzyme activity and sodium, potassium and calcium concentration in barley under salt stress. Plant Soil 209:217–224

    Article  CAS  Google Scholar 

  36. Liang Y, Chen Q, Liu Q, Zhang W, Ding R (2003) Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.). J Plant Physiol 160:1157–1164

    Article  PubMed  CAS  Google Scholar 

  37. Liang YC, Zhang WH, Chen Q, Ding RX (2005) Effects of silicon on H+-ATPase and H+-PPase activity, fatty acid composition and fluidity of tonoplast vesicles from roots of salt-stressed barley (Hordeum vulgare L.). Environ Exp Bot 53:29–37

    Article  CAS  Google Scholar 

  38. Limpanavech P, Chaiyasuta S, Vongpromek R, Pichyangkura R, Khunwasi C, Chadchawan S, Lotrakul P, Bunjongrat R, Chaidee A, Bangyeekhun T (2008) Chitosan effects on floral production, gene expression, and anatomical changes in the Dendrobium orchid. Sci Hortic 116:65–72

    Article  CAS  Google Scholar 

  39. Ma J, Nishimura K, Takahashi E (1989) Effect of silicon on growth of rice plant at different growth stages. Soil Sci Plant Nutr 35:347–356

    Article  CAS  Google Scholar 

  40. Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M (2006) A silicon transporter in rice. Nature 440:688–691

    Article  PubMed  CAS  Google Scholar 

  41. Marino D, Dunand C, Puppo A, Pauly N (2012) A burst of plant NADPH oxidases. Trends Plant Sci 17:9–15

    Article  PubMed  CAS  Google Scholar 

  42. Matoh T, Kairusmee P, Takahashi E (1986) Salt-induced damage to rice plants and alleviation effect of silicate. Soil Sci Plant Nutr 32:295–304

    Article  CAS  Google Scholar 

  43. Mitani N, Ma JF (2005) Uptake system of silicon in different plant species. J Exp Bot 56:1255–1261

    Article  PubMed  CAS  Google Scholar 

  44. Mitani N, Yamaji N, Ago Y, Iwasaki K, Ma JF (2011) Isolation and functional characterization of an influx silicon transporter in two pumpkin cultivars contrasting in silicon accumulation. Plant J 66:231–240

    Article  PubMed  CAS  Google Scholar 

  45. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  PubMed  CAS  Google Scholar 

  46. Munns R, James RA, Läuchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57:1025–1043

    Article  PubMed  CAS  Google Scholar 

  47. Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  48. Pfeiffer W, Höftberger M (2001) Oxidative burst in Chenopodium rubrum suspension cells. Physiol Plant 111:144–150

    Article  CAS  Google Scholar 

  49. Ponte LF, Silva AL, Carvalho FE, Maia JM, Voigt EL, Silveira JA (2014) Salt-induced delay in cotyledonary globulin mobilization is abolished by induction of proteases and leaf growth sink strength at late seedling establishment in cashew. J Plant Physiol 171:1362–1371

    Article  PubMed  CAS  Google Scholar 

  50. Ratanopad S, Kainz W (2006) Using GIS and map data the analysis of the expansion of salinized soils. In: Nayak S, Pathan SK, Garg JK (eds) Proceedings of the ISPRS Commission IV symposium on “Geospatial databases for sustainable development”, Vol. 36, Part 4B, September 27–30, 2006. Archives of ISPRS, Goa, pp 916–921

    Google Scholar 

  51. Ren S, Weeda S, Li H, Whitehead B, Guo Y, Atalay A, Parry J (2012) Salt tolerance in soybean WF-7 is partially regulated by ABA and ROS signaling and involves withholding toxic Cl ions from aerial tissues. Plant Cell Rep 31:1527–1533

    Article  PubMed  CAS  Google Scholar 

  52. Rios JJ, Martínez-Ballesta MC, Ruiz JM, Blasco B, Carvajal M (2017) Silicon-mediated improvement in plant salinity tolerance: the role of aquaporins. Front Plant Sci 8:948

    Article  PubMed  PubMed Central  Google Scholar 

  53. Robert N, d’Erfurth I, Marmagne A, Erhardt M, Allot M, Boivin K, Gissot L, Monachello D, Michaud M, Duchêne A-M, Barbier-Brygoo H, Maréchal-Drouard L, Ephritikhine G, Filleur S (2012) Voltage-dependent-anion-channels (VDACs) in Arabidopsis have a dual localization in the cell but show a distinct role in mitochondria. Plant Mol Biol 78:431–446

    Article  PubMed  CAS  Google Scholar 

  54. Romero-Aranda MR, Jurado O, Cuartero J (2006) Silicon alleviates the deleterious salt effect on tomato plant growth by improving plant water status. J Plant Physiol 163:847–855

    Article  PubMed  CAS  Google Scholar 

  55. Shi Y, Wang Y, Flowers TJ, Gong H (2013) Silicon decreases chloride transport in rice (Oryza sativa L.) in saline conditions. J Plant Physiol 170:847–853

    Article  PubMed  CAS  Google Scholar 

  56. Tateda C, Watanabe K, Kusano T, Takahashi Y (2011) Molecular and genetic characterization of the gene family encoding the voltage-dependent anion channel in Arabidopsis. J Exp Bot 62:4773–4785

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Tavakkoli E, Rengasamy P, McDonald GK (2010) High concentrations of Na+ and Cl ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress. J Exp Bot 61:4449–4459

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Tavakkoli E, Fatehi F, Coventry S, Rengasamy P, McDonald GK (2011) Additive effects of Na+ and Cl ions on barley growth under salinity stress. J Exp Bot 62:2189–2203

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Vajrabhaya M, Vajrabhaya T (1991) Somaclonal variation for salt tolerance in rice. In: Bajaj YPS (ed) Rice. Springer, Berlin, pp 368–382

    Chapter  Google Scholar 

  60. Van Bockhaven J, De Vleesschauwer D, Höfte M (2013) Towards establishing broad-spectrum disease resistance in plants: silicon leads the way. J Exp Bot 64:1281–1293

    Article  PubMed  CAS  Google Scholar 

  61. Wang X, Wei Z, Liu D, Zhao G (2011) Effects of NaCl and silicon on activities of antioxidative enzymes in roots, shoots and leaves of alfalfa. Afr J Biotechnol 10:545–549

    CAS  Google Scholar 

  62. Wang S, Liu P, Chen D, Yin L, Li H, Deng X (2015) Silicon enhanced salt tolerance by improving the root water uptake and decreasing the ion toxicity in cucumber. Front Plant Sci 6:759. https://doi.org/10.3389/fpls.2015.00759

    PubMed  PubMed Central  Article  Google Scholar 

  63. Wellburn AR (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144:307–313

    Article  CAS  Google Scholar 

  64. Wijnhoud JD, Konboon Y, Lefroy RDB (2003) Nutrient budgets: sustainability assessment of rainfed lowland rice-based systems in northeast Thailand. Agric Ecosyst Environ 100:119–127

    Article  Google Scholar 

  65. Wongchai C, Chaidee A, Pfeiffer W (2012) Multivariate analyses of salt stress and metabolite sensing in auto- and heterotroph Chenopodium cell suspensions. Plant Biol 14:129–141

    PubMed  CAS  Google Scholar 

  66. Yeo AR, Flowers SA, Rao G, Welfare K, Senanayake N, Flowers TJ (1999) Silicon reduces sodium uptake in rice (Oryza sativa L.) in saline conditions and this is accounted for by a reduction in the transpirational bypass flow. Plant Cell Environ 22:559–565

    Article  CAS  Google Scholar 

  67. Zhang J, Liu H, Zhao QZ, Du YX, Chang QX, Lu QL (2011) Effects of ATP production on silicon uptake by roots of rice seedlings. Plant Biosyst 145:866–872

    Article  Google Scholar 

  68. Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    Article  PubMed  CAS  Google Scholar 

  69. Zhu Z, Wei G, Li J, Qian Q, Yu J (2004) Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Sci 167:527–533

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Aniela Sommer for the comments on the manuscript.

Funding

This work was supported by the Grant for New Scholar (co-funded by TRF and CHE, MRG5280200) and the Higher Education Research Promotion and National Research University Project of Thailand (FW656B).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Anchalee Chaidee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Bhumi Nath Tripathi

Electronic supplementary material

Supplementary Table 1

(DOCX 29 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lekklar, C., Chadchawan, S., Boon-Long, P. et al. Salt stress in rice: multivariate analysis separates four components of beneficial silicon action. Protoplasma 256, 331–347 (2019). https://doi.org/10.1007/s00709-018-1293-2

Download citation

Keywords

  • Chloride toxicity
  • Multivariate analysis
  • Osmotic stress
  • Rice (Oryza sativa L.)
  • Silicon targets
  • Sodium toxicity