, Volume 255, Issue 5, pp 1433–1442 | Cite as

Structure of the stigma and style of Callaeum psilophyllum (Malpighiaceae) and its relation with potential pollinators

  • Sandra Silvina Aliscioni
  • Marina Gotelli
  • Juan Pablo Torretta
Original Article


The family Malpighiaceae, particularly in the Neotropic, shows a similar floral morphology. Although floral attraction and rewards to pollinators are alike, stigmas and styles show more diversity. The stigmas were described covered with a thin and impermeable cuticle that needs to be ruptured by the mechanical action of the pollinators. However, this characteristic was only mentioned for a few species and the anatomy and ultrastructure of the stigmas were not explored. In this work, we analyze the morphology, anatomy, and ultrastructure of the stigma and style of Callaeum psilophyllum. Moreover, we identify the potential pollinators in order to evaluate how the disposition of the stigmas is related with their size and its role in the exposure of the receptive stigmatic surface. Our observations indicate that Centris flavifrons, C. fuscata, C. tarsata, and C. trigonoides are probably efficient pollinators of C. psilophyllum. The three stigmas are covered by a cuticle that remained intact in bagged flowers. The flowers exposed to visitors show the cuticle broken, more secretion in the intercellular spaces between sub-stigmatic cells and abundant electron-dense components inside vacuoles in stigmatic papillae. This indicates that the stigmas prepares in similar ways to receive pollen grains, but the pollinator action is required to break the cuticle, and once pollen tubes start growing, stigmatic and sub-stigmatic cells release more secretion by a granulocrine process.


Morphology Anatomy Ultrastructure Centris Cuticle 



We thank to G. Zarvlasky for technical assistance and the Dirección de Áreas Naturales Protegidas, Organismo Provincial para el Desarrollo Sostenible, of the Provincia de Buenos Aires (Multiple-uses Natural Reserve Martín García) for permissions to conduct this study.

Funding information

This work was funded by a research grant from Agencia Nacional de Promoción Científica y Tecnológica, grant number PICT 2013-1867 to S. Aliscioni, Consejo Nacional de Investigaciones Científicas y Técnicas, grant number PIP 11220110100312, and Universidad de Buenos Aires, grant number UBACyT 20020130200203BA to J. P. Torretta. Sandra Aliscioni, Marina Gotelli, and Juan Pablo Torretta are affiliated with Consejo Nacional de Investigaciones Científicas y Técnicas, and Universidad de Buenos Aires, Argentina.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. This article does not contain any studies with human participants performed by any of the authors.


  1. Aliscioni SS, Torretta JP (2017) Malpighiaceae. In: Zuloaga FO, Belgrano MJ (eds) Flora Vascular de la República Argentina, Vol. 17. Buenos Aires, Estudio Sigma SRL, pp 163–205Google Scholar
  2. Aliscioni SS, Torretta JP, Bello ME, Galati BG (2009) Elaiophores in Gomesa bifolia (Sims) M.W. Chase & N.H. Williams (Oncidiinae: Cymbidieae: Orchidaceae): structure and oil secretion. Ann Bot 104:1141–1149CrossRefPubMedPubMedCentralGoogle Scholar
  3. Anderson WR (1979) Floral conservatism in neotropical Malpighiaceae. Biotropica 11:219–223CrossRefGoogle Scholar
  4. Arbeloa A, Herrero M (1991) Development of the ovular structures in peach [Prunus persica (L.) Batsch]. New Phytol 118:527–534CrossRefGoogle Scholar
  5. Arumugasamy K, Subramanian RB, Inamdar JA (1990) Cyathial nectaries of Euphorbia neriifolia L.: ultrastructure and secretion. Phytomorphology 40:281–288Google Scholar
  6. Bartoli A, Galati B, Tortosa R (2011) Anatomical studies of the secretory structures: glandular trichomes and ducts, in Grindelia pulchella Dunal (Astereae, Asteraceae). Flora 206:1063–1068CrossRefGoogle Scholar
  7. Borisjuk N, Hrmova M, Lopato S (2014) Transcriptional regulation of cuticle biosynthesis. Biotechnol Adv 32:526–540CrossRefPubMedGoogle Scholar
  8. Cane JH (1987) Estimation of bee size using intertegular span (Apoidea). J Kansas Entomol Soc 60:145–147Google Scholar
  9. Ciampolini F, Cresti M, Sarfatti G, Tiezzi A (1981) Ultrastructure of the stylar canal cells of Citrus limon (Rutaceae). Plant Syst Evol 138:263–274CrossRefGoogle Scholar
  10. Durkee LT (1983) The ultrastructure of floral and extrafloral nectaries. In: Bentley BL, Elias T (eds) The biology of nectarines. Columbia University Press, New York, pp 1–29Google Scholar
  11. Edlund AF, Swanson R, Preuss D (2004) Pollen and stigma structure and function: the role of diversity in pollination. Plant Cell 16:S84–S97. CrossRefPubMedPubMedCentralGoogle Scholar
  12. Elias TE, Rozich WR, Newcombe L (1975) The foliar and floral nectaries of Turnera ulmifolia L. Am J Bot 62:570–576CrossRefGoogle Scholar
  13. Eriksson M (1977) The ultrastructure of the nectary of red clover (Trifolium pratense). J Apic Res 16:184–193CrossRefGoogle Scholar
  14. Fahn A (1979) Secretory tissues in plants. Academic Press, New YorkGoogle Scholar
  15. Fahn A (1988) Secretory tissues in vascular plants. New Phytol 108:229–257CrossRefGoogle Scholar
  16. Fahn A (2000) Structure and function of secretory cells. Adv Bot Res 31:37–75CrossRefGoogle Scholar
  17. Fich EA, Segerson NA, Rose JKC (2016) The plant polyester cutin: biosynthesis, structure, and biological roles. Annu Rev Plant Biol 67:207–233CrossRefPubMedGoogle Scholar
  18. Gotelli MM, Galati BG, Medan D (2012) Structure of the stigma and style in Colletia and Discaria (Rhamnaceae: Colletieae). Plant Syst Evol 298:1635–1641CrossRefGoogle Scholar
  19. Gotelli MM, Galati BG, Zarlavsky G, Medan D (2017a) Structure of the style and pollen tube pathway in the Ziziphoid and Rhamnoid clades of Rhamnaceae. Protoplasma 255:501–515. CrossRefPubMedGoogle Scholar
  20. Gotelli M, Lattar E, Zini M, Galati B (2017b) Style morphology and pollen tube pathway. Plant Reproduction 30:155–170. CrossRefPubMedGoogle Scholar
  21. Guimarães ALA, Cruz SMS, Vieira ACM (2014) Structure of floral galls of Byrsonima sericea (Malpighiaceae) induced by Bruggmanniella byrsonimae (Cecidomyiidae, Diptera) and their effects on host plants. Plant Biol 16:467–475. CrossRefPubMedGoogle Scholar
  22. Gunning BES, Pate JS (1969) Transfer cells: plant cells with wall ingrowths, specialized in relation to short distance transport of solutes, their occurrence, structure and development. Protoplasma 68:107–133CrossRefGoogle Scholar
  23. Herrero M, Dickinson HG (1979) Pollen–pistil incompatibility in Petunia hybrid, changes in the pistil following compatible and incompatible intraspecific crosses. J Cell Sci 36:1–18PubMedGoogle Scholar
  24. Heslop-Harrison J, Heslop-Harrison Y (1980) The pollen-stigma interaction in the grasses. 1. Fine-structure and cytochemistry of the stigmas of Hordeum and Secale. Acta BotNeerl 29:261–276Google Scholar
  25. Heslop-Harrison J, Heslop-Harrison Y (1982) The specialized cuticles of the receptive surfaces of angiosperm stigmas. In: Cutler DF, Alvin KL, Price CE (eds) The plant cuticle. Academic Press, London, pp 99–120Google Scholar
  26. Holloway PJ (1982) Structure and histochemistry of plant cuticlar membranes: an overview. In: Cutler DF, Alvin KL, Price CE (eds) The plant cuticle. Academic Press, London, pp 1–32Google Scholar
  27. Javelle M, Vernoud V, Rogowsky PM, Ingram GC (2011) Epidermis: the formation and functions of a fundamental plant tissue. New Phytol 189:17–39CrossRefPubMedGoogle Scholar
  28. Jessen D, Olbrich A, Knufer J, Kruger A, Hoppert M, Polle A et al (2011) Combined activity of LACS1 and LACS4 is required for proper pollen coat formation in Arabidopsis. Plant J 68:715–726CrossRefPubMedGoogle Scholar
  29. Johnson DM (1986) Revision of the neotropical genus Callaeum (Malpighiaceae). Syst Bot 11:335–353CrossRefGoogle Scholar
  30. Johri BM, Rao PS (1984) Experimental embryology. In Embryology of angiosperms. Springer, BerlinCrossRefGoogle Scholar
  31. Knapp S (2010) On ‘various contrivances’: pollination, phylogeny and flower form in the Solanaceae. Philos Trans R Soc Lond Ser B Biol Sci 365:449–460CrossRefGoogle Scholar
  32. Kunst L, Samuels AL (2003) Biosynthesis and secretion of plant cuticular wax. Prog Lipid Res 42:51–80CrossRefPubMedGoogle Scholar
  33. Li-Beisson Y, Pollard M, Sauveplane V, Pinot F, Ohlrogge J, Beisson F (2009) Nanoridges that characterize the surface morphology of flowers require the synthesis of cutin polyester. Proc Natl Acad Sci U S A 106:22008–22013CrossRefPubMedPubMedCentralGoogle Scholar
  34. Lush WM, Grieser F, Wolters-Arts M (1998) Directional guidance of Nicotiana alata pollen tubes in vitro and on the stigma. Plant Physiol 118:733–741CrossRefPubMedPubMedCentralGoogle Scholar
  35. Lüttge U, Schnepf E (1976) Elimination processes by glands. Organic substances. In: Lüttge U, Pitman MG (eds) Transport in plants II, encyclopedia of plant physiology, new series, vol 2B. Springer, New York, pp 244–277Google Scholar
  36. Mercadante-Simoes MO, Paiva EAS (2013) Leaf colleters in Tontelea micrantha (Celastraceae, Salacioideae): ecological, morphological and structural aspects. C R Biol 336:400–406CrossRefPubMedGoogle Scholar
  37. Meyberg M (1988) Cytochemistry and ultrastructure of the mucilage secreting trichomes of Nymphoides peltata (Menyanthaceae). Ann Bot 62:537–547CrossRefGoogle Scholar
  38. Michener CD (2007) The bees of the world, 2nd edn. Johns Hopkins, BaltimoreGoogle Scholar
  39. Nepi M, Ciampolini F, Pacini E (1996) Development and ultrastructure of Cucurbita pepo nectaries of male flowers. Ann Bot 81:251–262Google Scholar
  40. Pacek A, Stpiczynska M (2007) The structure of elaiophores in Oncidium cheirophorum Rchb. f. And Ornithocephalus kruegeri Rchb. f. (Orchidaceae). Acta Agrobot 60:9–14CrossRefGoogle Scholar
  41. Paiva EAS (2009) Occurrence, structure and functional aspects of the colleters of Copaifera langsdorffii Desf. (Fabaceae, Caesalpinioideae). C R Biol 332:1078–1084CrossRefPubMedGoogle Scholar
  42. Paiva EAS (2016) How do secretory products cross the plant cell wall to be released? A new hypothesis involving cyclic mechanical actions of the protoplast. Ann Bot 117:533–540. CrossRefPubMedPubMedCentralGoogle Scholar
  43. Pandey AK (1997) Introduction to the embryology of angiosperms. CBS Publishers and Distributors, DaryaganjGoogle Scholar
  44. Pate JS, Gunning BES (1972) Transfer cells. Annu Rev Plant Physiol 23:173–196CrossRefGoogle Scholar
  45. Possobom CCF, Machado SR (2017) Elaiophores in three Neotropical Malpighiaceae species: a comparative study. Plant Syst Evol 303:1–18CrossRefGoogle Scholar
  46. Possobom CCF, Guimaraes E, Machado SR (2015) Structure and secretion mechanisms of floral glands in Diplopterys pubipetala (Malpighiaceae), a neotropical species. Flora 211:26–39CrossRefGoogle Scholar
  47. Raghavan V (1997) Molecular embryology of flowering plants. University Press, Cambridge, pp 33–35CrossRefGoogle Scholar
  48. Razem FA, Davis AR (1999) Anatomical and ultrastructural changes of the floral nectary of Pisum sativum L. during flower development. Protoplasma 206:57–72CrossRefGoogle Scholar
  49. Roig Alsina A (2000) Claves para las especies argentinas de Centris (Hymenoptera, Apidae), con descripción de nuevas especies y notas sobre distribución. Rev Mus Argentino Cienc Nat ns 2:171–193CrossRefGoogle Scholar
  50. Rosenfeldt S, Galati BG (2000) Stigma and style morphology in Ceiba insignis (Bombacaceae). Phytomorphology 50:69–74Google Scholar
  51. Rosenfeldt S, Galati BG (2009) The structure of the stigma and the style of Oxalis spp. (Oxalidaceae). J Torrey Bot Soc 136:33–45CrossRefGoogle Scholar
  52. Sigrist MR, Sazima M (2004) Pollination and reproductive biology of twelve species of neotropical Malpighiaceae: stigma morphology and its implications for the breeding system. Ann Bot 94:33–41. CrossRefPubMedPubMedCentralGoogle Scholar
  53. Souto LS, Oliveira DMT (2013) Evaluation of the floral vasculature of the Janusia, Mascagnia and Tetrapterys species as a tool to explain the decrease of floral organs in Malpighiaceae. Flora 208:351–359. CrossRefGoogle Scholar
  54. Steiner KE (1985) Functional dioecism in the Malpighiaceae: the breeding system of Spachea membranacea Cuatr. Am J Bot 72:1537–1543CrossRefGoogle Scholar
  55. Stpiczynska M (2003) Nectar resorption in the spur of Platanthera chlorantha custer (Rchb.) Orchidaceae- structural and microautoradiographic study. Plant Syst Evol 238:119–126CrossRefGoogle Scholar
  56. Stpiczynska M, Davies K (2008) Elaiophore structure and oil secretion in flowers of Oncidium trulliferum Lindl. And Ornithophora radicans (Rchb.f.) Garay & Pabst (Oncidiinae: Orchidaceae). Ann Bot 101:375–384CrossRefPubMedGoogle Scholar
  57. Tilton VR, Horner HT Jr (1980) Stigma, style, and obturator of Ornithogalum caudatum (Liliaceae) and their function in reproductive process. Am J Bot 67:1113–1131CrossRefGoogle Scholar
  58. Torretta JP, Roig Alsina A (2017) Las abejas colectoras de aceite del género Paratetrapedia Moure (Hymenoptera, Apidae, Tapinotaspidini) en la Argentina. Rev Mus Argentino Cienc Nat ns 19:131–140CrossRefGoogle Scholar
  59. Vinson SB, Frankie GW, Williams HJ (1996) Chemical ecology of bees of the genus Centris (Hymenoptera: Apidae). Fla Entomol 79:109–129CrossRefGoogle Scholar
  60. Vogel S (1974) Ölblumen und Glsammelnde Bienen. Tropische und subtropische Pflanzenwelt, Nr. 7. F. Steiner, Wiesbaden 267 ppGoogle Scholar
  61. Vogel S (1990) History of the Malpighiaceae in the light of pollination ecology. Mem New York Bot Gard 55:130–142Google Scholar
  62. Wolters-Arts M, Lush WM, Mariani C (1998) Lipids are required for directional pollen-tube growth. Nature 392:818–821CrossRefPubMedGoogle Scholar
  63. Young RE, McFarlane HE, Hahn MG, Western TL, Haughn GW, Samuels AL (2008) Analysis of the Golgi apparatus in Arabidopsis seed coat cells during polarized secretion of pectin-rich mucilage. Plant Cell 20:1623–1638CrossRefPubMedPubMedCentralGoogle Scholar
  64. Zarlavsky GE (2014) Histología Vegetal: técnicas simples y complejas. Sociedad Argentina de Botánica, Buenos AiresGoogle Scholar
  65. Zinkl GM, Zwiebel B, Grier DG, Preuss D (1999) Pollen-stigma adhesion in Arabidopsis: a species-specific interaction mediated by hydrophobic molecules in the pollen exine. Development 126:5431–5440PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Sandra Silvina Aliscioni
    • 1
    • 2
    • 3
  • Marina Gotelli
    • 2
    • 3
  • Juan Pablo Torretta
    • 2
    • 3
  1. 1.Instituto de Botánica Darwinion (IBODA)Buenos AiresArgentina
  2. 2.Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Botánica GeneralBuenos AiresArgentina
  3. 3.Consejo Nacional de Investigaciones Científicas y TécnicasBuenos AiresArgentina

Personalised recommendations