Advertisement

Protoplasma

, Volume 255, Issue 4, pp 1107–1119 | Cite as

Exogenous GA3 application altered morphology, anatomic and transcriptional regulatory networks of hormones in Eucalyptus grandis

Original Article

Abstract

Gibberellins (GAs) play a key role in plant growth and development including cell elongation, cell expansion, and xylem differentiation. Eucalyptus are the world’s most widely planted hardwood trees providing fiber and energy. However, the roles of GAs in Eucalyptus remain unclear and their effects on xylem development remain to be determined. In this study, E. grandis plants were treated with 0.10 mg L−1 GA3 and/or paclobutrazol (PAC, a GA inhibitor). The growth of shoot and root were recorded, transverse sections of roots and stems were stained using toluidine blue, and expression levels of genes related to hormone response and secondary cell wall biosynthesis were analyzed by quantitative real-time PCR. The results showed that GA3 dramatically promoted the length of shoot and root, but decreased the diameter of root and stem. Exogenous GA3 application also significantly promoted xylem development in both stem and root. Expression analysis revealed that exogenous GA3 application altered the transcript levels of genes related to the GA biosynthetic pathway and GA signaling, as well as genes related to auxin, cytokinin, and secondary cell wall. These findings suggest that GAs may interact with other hormones (such as auxin and cytokinin) to regulate the expression of secondary cell wall biosynthesis genes and trigger xylogenesis in Eucalyptus plants.

Keywords

Gibberellin Eucalyptus grandis Root Xylem Anatomical Gene expression 

Notes

Acknowledgements

We’d like to thank Dr. Zehong Ding for his critical reading of this manuscript.

Authors’ contribution

CJF and BSZ designed the research. QYL, GSG, ZFQ, and XDL performed the experiments. CJF and QYL analyzed the data. CJF wrote the paper. CJF and BSZ revised the paper. All authors read and approved the final manuscript.

Funding information

This work was supported by National Natural Science Foundation of China (Grant No. 31400554) and the Fundamental Research Funds for the Central Non-profit Research Institution of CAF (Grant No. CAFYBB2014QB040).

Compliance with ethical standards

Conflict of interests

The authors declare that they have no competing interests.

References

  1. Aloni R, Tollier MT, Monties B (1990) The role of auxin and gibberellin in controlling lignin formation in primary phloem fibers and in xylem of Coleus blumei stems. Plant Physiol 94(4):1743–1747.  https://doi.org/10.1104/pp.94.4.1743 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Barlier I, Kowalczyk M, Marchant A, Ljung K, Bhalerao R, Bennett M, Sandberg G, Bellini C (2000) The SUR2 gene of Arabidopsis thaliana encodes the cytochrome P450 CYP83B1, a modulator of auxin homeostasis. Proc Natl Acad Sci 97(26):14819–14824.  https://doi.org/10.1073/pnas.260502697 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Chaffey N, Cholewa E, Regan S, Sundberg B (2002) Secondary xylem development in Arabidopsis: a model for wood formation. Physiol Plant 114(4):594–600.  https://doi.org/10.1034/j.1399-3054.2002.1140413.x CrossRefPubMedGoogle Scholar
  4. Chiang HH, Hwang I, Goodman HM (1995) Isolation of the Arabidopsis GA4 locus. Plant Cell 7(2):195–201.  https://doi.org/10.1105/tpc.7.2.195 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Coles JP, Phillips AL, Croker SJ, García-Lepe R, Lewis MJ, Hedden P (1999) Modification of gibberellin production and plant development in Arabidopsis by sense and antisense expression of gibberellin 20-oxidase genes. Plant J 17(5):547–556CrossRefPubMedGoogle Scholar
  6. Daviere JM, Achard P (2013) Gibberellin signaling in plants. Development 140(6):1147–1151.  https://doi.org/10.1242/dev.087650 CrossRefPubMedGoogle Scholar
  7. de Almeida MR, de Bastiani D, Gaeta ML, de Araújo Mariath JE, de Costa F, Retallick J, Nolan L, Tai HH, Strömvik MV, Fett-Neto AG (2015) Comparative transcriptional analysis provides new insights into the molecular basis of adventitious rooting recalcitrance in eucalyptus. Plant Sci 239:155–165.  https://doi.org/10.1016/j.plantsci.2015.07.022 CrossRefPubMedGoogle Scholar
  8. de Oliveira LA, Breton MC, Bastolla FM, Camargo SS, Margis R, Frazzon J, Pasquali G (2011) Reference genes for the normalization of gene expression in eucalyptus species. Plant Cell Physiol 53:405–422CrossRefPubMedGoogle Scholar
  9. Eriksson ME, Israelsson M, Olsson O, Moritz T (2000) Increased gibberellin biosynthesis in transgenic trees promotes growth, biomass production and xylem fiber length. Nat Biotech 18(7):784–788.  https://doi.org/10.1038/77355 CrossRefGoogle Scholar
  10. Guo H, Wang Y, Liu H, Hu P, Jia Y, Zhang C, Wang Y, Gu S, Yang C, Wang C (2015) Exogenous GA3 application enhances xylem development and induces the expression of secondary wall biosynthesis related genes in Betula platyphylla. Int J Mol Sci 16(9):22960–22975.  https://doi.org/10.3390/ijms160922960 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Hartweck LM (2008) Gibberellin signaling. Planta 229(1):1–13.  https://doi.org/10.1007/s00425-008-0830-1 CrossRefPubMedGoogle Scholar
  12. Hedden P, Thomas SG (2012) Gibberellin biosynthesis and its regulation. Biochem J 444(1):11–25.  https://doi.org/10.1042/BJ20120245 CrossRefPubMedGoogle Scholar
  13. Huang S, Raman AS, Ream JE, Fujiwara H, Cerny RE, Brown SM (1998) Overexpression of 20-oxidase confers a gibberellin-overproduction phenotype in Arabidopsis. Plant Physiol 118(3):773–781.  https://doi.org/10.1104/pp.118.3.773 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Ilegems M, Douet V, Meylan-Bettex M, Uyttewaal M, Brand L, Bowman JL, Stieger PA (2010) Interplay of auxin, KANADI and class III HD-ZIP transcription factors in vascular tissue formation. Development 137(6):975–984.  https://doi.org/10.1242/dev.047662 CrossRefPubMedGoogle Scholar
  15. Israelsson M, Sundberg B, Moritz T (2005) Tissue-specific localization of gibberellins and expression of gibberellin-biosynthetic and signaling genes in wood-forming tissues in aspen. Plant J 44(3):494–504.  https://doi.org/10.1111/j.1365-313X.2005.02547.x CrossRefPubMedGoogle Scholar
  16. Li G, Zhu C, Gan L, Ng D, Xia K (2015) GA3 enhances root responsiveness to exogenous IAA by modulating auxin transport and signalling in Arabidopsis. Plant Cell Rep 34(3):483–494.  https://doi.org/10.1007/s00299-014-1728-y CrossRefPubMedGoogle Scholar
  17. Mauriat M, Moritz T (2009) Analyses of GA20ox- and GID1-over-expressing aspen suggest that gibberellins play two distinct roles in wood formation. Plant J 58(6):989–1003.  https://doi.org/10.1111/j.1365-313X.2009.03836.x CrossRefPubMedGoogle Scholar
  18. Mauriat M, Sandberg LG, Moritz T (2011) Proper gibberellin localization in vascular tissue is required to control auxin-dependent leaf development and bud outgrowth in hybrid aspen. Plant J 67(5):805–816.  https://doi.org/10.1111/j.1365-313X.2011.04635.x CrossRefPubMedGoogle Scholar
  19. Mauriat M, Petterle A, Bellini C, Moritz T (2014) Gibberellins inhibit adventitious rooting in hybrid aspen and Arabidopsis by affecting auxin transport. Plant J 78(3):372–384.  https://doi.org/10.1111/tpj.12478 CrossRefPubMedGoogle Scholar
  20. Milhinhos A, Miguel CM (2013) Hormone interactions in xylem development: a matter of signals. Plant Cell Rep 32(6):867–883.  https://doi.org/10.1007/s00299-013-1420-7 CrossRefPubMedGoogle Scholar
  21. Myburg AA, Grattapaglia D, Tuskan GA, Hellsten U, Hayes RD, Grimwood J, Jenkins J, Lindquist E, Tice H, Bauer D (2014) The genome of Eucalyptus grandis. Nature 510(7505):356–362.  https://doi.org/10.1038/nature13308 CrossRefPubMedGoogle Scholar
  22. Nam Y-J, Herman D, Blomme J, Chae E, Kojima M, Coppens F, Storme V, Van Daele T, Dhondt S, Sakakibara H (2017) Natural variation of molecular and morphological gibberellin responses. Plant Physiol 173(1):703–714.  https://doi.org/10.1104/pp.16.01626 CrossRefPubMedGoogle Scholar
  23. Niu S, Li Z, Yuan H, Fang P, Chen X, Li W (2013) Proper gibberellin localization in vascular tissue is required to regulate adventitious root development in tobacco. J Exp Bot 64(11):3411–3424.  https://doi.org/10.1093/jxb/ert186 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Ohashi-Ito K, Fukuda H (2010) Transcriptional regulation of vascular cell fates. Curr Opin Plant Biol 13(6):670–676.  https://doi.org/10.1016/j.pbi.2010.08.011 CrossRefPubMedGoogle Scholar
  25. Park E-J, Kim H-T, Choi Y-I, Lee C, Nguyen VP, Jeon H-W, Cho J-S, Funada R, Pharis RP, Kurepin LV (2015) Overexpression of gibberellin 20-oxidase1 from Pinus densiflora results in enhanced wood formation with gelatinous fiber development in a transgenic hybrid poplar. Tree Physiol 35(11):1264–1277.  https://doi.org/10.1093/treephys/tpv099 PubMedGoogle Scholar
  26. Pearce S, Huttly AK, Prosser IM, Li Y-D, Vaughan SP, Gallova B, Patil A, Coghill JA, Dubcovsky J, Hedden P, Phillips AL (2015) Heterologous expression and transcript analysis of gibberellin biosynthetic genes of grasses reveals novel functionality in the GA3ox family. BMC Plant Biol 15(1):130.  https://doi.org/10.1186/s12870-015-0520-7 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Phillips AL, Ward DA, Uknes S, Appleford NE, Lange T, Huttly AK, Gaskin P, Graebe JE, Hedden P (1995) Isolation and expression of three gibberellin 20-oxidase cDNA clones from Arabidopsis. Plant Physiol 108(3):1049–1057.  https://doi.org/10.1104/pp.108.3.1049 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Plackett ARG, Powers SJ, Fernandez-Garcia N, Urbanova T, Takebayashi Y, Seo M, Jikumaru Y, Benlloch R, Nilsson O, Ruiz-Rivero O, Phillips AL, Wilson ZA, Thomas SG, Hedden P (2012) Analysis of the developmental roles of the Arabidopsis gibberellin 20-oxidases demonstrates that GA20ox1, −2, and −3 are the dominant paralogs. Plant Cell 24(3):941–960.  https://doi.org/10.1105/tpc.111.095109 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Ragni L, Nieminen K, Pacheco-Villalobos D, Sibout R, Schwechheimer C, Hardtke CS (2011) Mobile gibberellin directly stimulates Arabidopsis hypocotyl xylem expansion. Plant Cell 23(4):1322–1336.  https://doi.org/10.1105/tpc.111.084020 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Rieu I, Ruiz-Rivero O, Fernandez-Garcia N, Griffiths J, Powers SJ, Gong F, Linhartova T, Eriksson S, Nilsson O, Thomas SG (2008) The gibberellin biosynthetic genes AtGA20ox1 and AtGA20ox2 act, partially redundantly, to promote growth and development throughout the Arabidopsis life cycle. Plant J 53(3):488–504.  https://doi.org/10.1111/j.1365-313X.2007.03356.x CrossRefPubMedGoogle Scholar
  31. Ruedell CM, de Almeida MR, Schwambach J, Posenato CF, Fett-Neto AG (2012) Pre and post-severance effects of light quality on carbohydrate dynamics and microcutting adventitious rooting of two eucalyptus species of contrasting recalcitrance. Plant Growth Regul 69:235–245CrossRefGoogle Scholar
  32. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675.  https://doi.org/10.1038/nmeth.2089 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Shininger TL (1971) The regulation of cambial division and secondary xylem differentiation in xanthium by auxins and gibberellin. Plant Physiol 47(3):417–422.  https://doi.org/10.1104/pp.47.3.417 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Thomas SG, Phillips AL, Hedden P (1999) Molecular cloning and functional expression of gibberellin 2-oxidases, multifunctional enzymes involved in gibberellin deactivation. Proc Natl Acad Sci 96(8):4698–4703.  https://doi.org/10.1073/pnas.96.8.4698 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Voorend W, Nelissen H, Vanholme R, De Vliegher A, Van Breusegem F, Boerjan W, Roldan-Ruiz I, Muylle H, Inze D (2016) Overexpression of GA20-OXIDASE1 impacts plant height, biomass allocation and saccharification efficiency in maize. Plant Biotechnol J 14(3):997–1007.  https://doi.org/10.1111/pbi.12458 CrossRefPubMedGoogle Scholar
  36. Wang GL, Que F, Xu ZS, Wang F, Xiong AS (2015) Exogenous gibberellin altered morphology, anatomic and transcriptional regulatory networks of hormones in carrot root and shoot. BMC Plant Biol 15(1):290.  https://doi.org/10.1186/s12870-015-0679-y CrossRefPubMedPubMedCentralGoogle Scholar
  37. Wang G-L, Que F, Xu Z-S, Wang F, Xiong A-S (2016) Exogenous gibberellin enhances secondary xylem development and lignification in carrot taproot. Protoplasma 254:839–848CrossRefPubMedGoogle Scholar
  38. Wuddineh WA, Mazarei M, Zhang J, Poovaiah CR, Mann DG, Ziebell A, Sykes RW, Davis MF, Udvardi MK, Stewart CN (2015) Identification and overexpression of gibberellin 2-oxidase (GA2ox) in switchgrass (Panicum virgatum L.) for improved plant architecture and reduced biomass recalcitrance. Plant Biotechnol J 13(5):636–647.  https://doi.org/10.1111/pbi.12287 CrossRefPubMedGoogle Scholar
  39. Xu M, Zhu L, Shou H, Wu P (2005) A PIN1 family gene, OsPIN1, involved in auxin-dependent adventitious root emergence and tillering in rice. Plant Cell Physiol 46(10):1674–1681.  https://doi.org/10.1093/pcp/pci183 CrossRefPubMedGoogle Scholar
  40. Yamaguchi S (2008) Gibberellin metabolism and its regulation. Annu Rev Plant Biol 59(1):225–251.  https://doi.org/10.1146/annurev.arplant.59.032607.092804 CrossRefPubMedGoogle Scholar
  41. Zavattieri MA, Ragonezi C, Klimaszewska K (2016) Adventitious rooting of conifers: influence of biological factors. Trees 30(4):1021–1032.  https://doi.org/10.1007/s00468-016-1412-7 CrossRefGoogle Scholar
  42. Zhong R, Demura T, Ye ZH (2006) SND1, a NAC domain transcription factor, is a key regulator of secondary wall synthesis in fibers of Arabidopsis. Plant Cell Online 18(11):3158–3170.  https://doi.org/10.1105/tpc.106.047399 CrossRefGoogle Scholar
  43. Zhong R, Lee C, Zhou J, McCarthy RL, Ye Z-H (2008) A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis. Plant Cell 20(10):2763–2782.  https://doi.org/10.1105/tpc.108.061325 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Research Institute of Tropical ForestryChinese Academy of ForestryGuangzhouPeople’s Republic of China
  2. 2.State Key Laboratory of Tree Genetics and BreedingChinese Academy of ForestryBeijingPeople’s Republic of China

Personalised recommendations