Protoplasma

, Volume 255, Issue 3, pp 911–921 | Cite as

Frustule morphogenesis of raphid pennate diatom Encyonema ventricosum (Agardh) Grunow

  • Yekaterina D. Bedoshvili
  • Ksenia V. Gneusheva
  • Maria S. Popova
  • Tatyana N. Avezova
  • Kirill Yu. Arsentyev
  • Yelena V. Likhoshway
Original Article
  • 197 Downloads

Abstract

Diatoms stand out among other microalgae due to the high diversity of species-specific silica frustules whose components (valves and girdle bands) are formed within the cell in special organelles called silica deposition vesicles (SDVs). Research on cell structure and morphogenesis of frustule elements in diatoms of different taxonomic groups has been carried out since the 1950s but is still relevant today. Here, cytological features and valve morphogenesis in the freshwater raphid pennate diatom Encyonema ventricosum (Agardh) Grunow have been studied using light and transmission electron microscopy of cleaned frustules and ultrathin sections of cells, and scanning electron and atomic force microscopy of the frustule surface. Data have been obtained on chloroplast structure: the pyrenoid is spherical, penetrated by a lamella (a stack of two thylakoids); the girdle lamella consists of several short lamellae. The basic stages of frustule morphogenesis characteristic of raphid pennate diatoms have been traced, with the presence of cytoskeletal elements near SDVs being observed throughout this process. Degradation of the plasmalemma and silicalemma is shown to take place when the newly formed valve is released into the space between sister cells. The role of vesicular transport and exocytosis in the gliding of pennate diatoms is discussed.

Keywords

Diatoms Valve morphogenesis SDV Girdle bands Chloroplast Gliding 

References

  1. Bedoshvili Y, Popkova T, Likhoshway Y (2009) Chloroplast structure of diatoms of different classes. Cell Tissue Biol 3:297–310.  https://doi.org/10.1134/S1990519X09030122 CrossRefGoogle Scholar
  2. Bedoshvili Y, Kaluzhnaya O, Likhoshway Y (2012) The frustule morphogenesis of Aulacoseira baicalensis in the natural population. J Adv Microsc Res 7:218–224.  https://doi.org/10.1166/jamr.2012.1119 CrossRefGoogle Scholar
  3. Chiappino ML, Volcani BE (1977) Studies on the biochemistry and fine structure of silica shell formation in diatoms VII. Sequential cell wall development in the pennate Navicula pelliculosa. Protoplasma 93(2-3):205–221.  https://doi.org/10.1007/BF01275654 CrossRefGoogle Scholar
  4. Crawford S, Higgins M, Mulvaney P, Wetherbee R (2001) Nanostructure of the diatom frustule as revealed by atomic force and scanning electron microscopy. J Phycol 37(4):543–554.  https://doi.org/10.1046/j.1529-8817.2001.037004543.x CrossRefGoogle Scholar
  5. Crawford R (1981) The siliceous components of the diatom cell wall and their morphological variation. In: Simpson TL, Volcani BE (eds) Silicon and siliceous structures in biological systems. Springer-Verlag, New York, pp 129–156.  https://doi.org/10.1007/978-1-4612-5944-2_6 CrossRefGoogle Scholar
  6. Crawford R, Schmid AM (1986) Ultrastructure of silica deposition in diatoms. In: Leadbeater BS and Riding R (eds) Biomineralization in lower plants and animals. The Systematics Association Special, vol 30. Oxford University Press, Oxford, pp 291–314Google Scholar
  7. Dawson PA (1973) Observation on the structure of some forms of Gomphonema parvulum Kütz. III. Frustule formation. J Phycol 9:353–365Google Scholar
  8. Drum RW, Pankratz HS (1964) Post mitotic fine structure of Gomphonema parvulum. J Ultrastruct Res 10(3-4):217–223.  https://doi.org/10.1016/S0022-5320(64)80006-X CrossRefPubMedGoogle Scholar
  9. Edgar LA, Pickett-Heaps JD (1983) The mechanism of diatom locomotion. I. An ultrastructural study of the motility apparatus. Proc R Soc Lond 218(1212):331–343.  https://doi.org/10.1098/rspb.1983.0042 CrossRefGoogle Scholar
  10. Ehrlich H, Witkowski A (2015) Biomineralization in diatoms: the organic templates. Biol Inspir Syst 6:39–58.  https://doi.org/10.1007/978-94-017-9398-8_3 CrossRefGoogle Scholar
  11. Flori S, Jouneau PH, Finazzi G, Marechal E, Falconet D (2016) Ultrastructure of the periplastidial compartment of the diatom Phaeodactylum tricornutum. Protist 167(3):254–267.  https://doi.org/10.1016/j.protis.2016.04.001 CrossRefPubMedGoogle Scholar
  12. Geitler L (1959) Morphologische, entwicklungsgcshichtliehe und systematische Notizen über einige Süsswasseralgen. Österr Bot Z 106(1-2):159–171.  https://doi.org/10.1007/BF01279004 CrossRefGoogle Scholar
  13. Geitler L (1981) Die Lage des Chromatophors in Beziehung zur Systematik von Cymbella-Arten (Bacillariophyceae). Pl Syst Evol 138(1-2):153–156.  https://doi.org/10.1007/BF00984616 CrossRefGoogle Scholar
  14. Grachev M, Annenkov V, Likhoshway Y (2008) Silicon nanotechnologies of pigmented heterokonts. BioEssays 30(4):328–337.  https://doi.org/10.1002/bies.20731 CrossRefPubMedGoogle Scholar
  15. Hammer JA, Sellers JR (2012) Walking to work: roles for class V myosins as cargo transporters. Nat Rev Mol Cell Biol 13:13–26CrossRefGoogle Scholar
  16. Higgins MJ, Molino P, Mulvaney P, Wetherbee R (2003) The structure and nanomechanical properties of the adhesive mucilage that mediates diatom-substratum adhesion and motility. J Phycol 39(6):1181–1193.  https://doi.org/10.1111/j.0022-3646.2003.03-027.x CrossRefGoogle Scholar
  17. Hildebrand M, Wetherbee R (2003) Components and control of silicification in diatoms. In: Muller WEG (ed) Silicon biomineralization. Biology, biochemistry, molecular biology, biotechnology (Progress in molecular and subcellular biology, Vol. 33). Springer-Verlag, New-York, pp 11–58Google Scholar
  18. Kharitonenko K, Bedoshvili Y, Likhoshway Y (2015) Changes in the micro- and nanostructure of siliceous frustule valves in the diatom Synedra acus under the effect of colchicine treatment at different stages of the cell cycle. J Struct Biol 190(1):73–80.  https://doi.org/10.1016/j.jsb.2014.12.004 CrossRefPubMedGoogle Scholar
  19. Kociolek JP, Sicko-Goad L, Stoermer EF (1990) Cytoplasmic fine structure of two Encyonema species. In: Kociolek P (Ed.) Proceedings of the 11th International Diatom Symposium. San-Francisco, California Academy of Sciences. pp 235–245Google Scholar
  20. Li CW, Volcani B (1984) Aspects of silicification in wall morphogenesis of diatoms. Phil Trans Roy Soc London B 304(1121):519–528.  https://doi.org/10.1098/rstb.1984.0043 CrossRefGoogle Scholar
  21. Lodish H, Berk A, Kaiser C, Krieger M, Scott M, Bretcher A, Ploegh H, Matsudaira P (2007) Molecular cell biology. WH Freeman and Company, New YorkGoogle Scholar
  22. Mann DG (1984) An ontogenetic approach to diatom systematics. In: Mann DG (ed) Proceedings of the seventh international diatom symposium. O Koeltz, Koenigstein, pp 113–144Google Scholar
  23. Medlin LK, Kaczmarska I (2004) Evolution of the diatoms: V. Morphological and cytological support of the major clades and taxonomic revision. Phycologia 43(3):245–227.  https://doi.org/10.2216/i0031-8884-43-3-245.1 CrossRefGoogle Scholar
  24. Parkinson J, Brechet Y, Gordon R (1999) Centric diatom morphogenesis: a model based on a DLA algorithm investigating the potential role of microtubules. Biochim Biophys Acta 1452(1):89–102.  https://doi.org/10.1016/S0167-4889(99)00116-0 CrossRefPubMedGoogle Scholar
  25. Pickett-Heaps JD (1998) Cell division and morphogenesis of the centric diatom Chaetoceros decipiens (Bacillariophiceae) II. Electron microscopy and a new paradigm for tip growth. J Phycol 34(6):995–1004.  https://doi.org/10.1046/j.1529-8817.1998.340995.x CrossRefGoogle Scholar
  26. Pickett-Heaps JD, Schmid AM, Edgar L (1990) The cell biology of diatom wall morphogenesis. Progress in phycological research. Biopress Ltd, BristolGoogle Scholar
  27. Poulsen N, Spector I, Spurck T, Schultz T, Wetherbee R (1999) Diatom gliding is the result of an actin–myosin motility system. Cell Motil Cytoskeleton 44(1):23–33.  https://doi.org/10.1002/(SICI)1097-0169(199909)44:1<23::AID-CM2>3.0.CO;2-D CrossRefPubMedGoogle Scholar
  28. Reimann BEF (1964) Deposition of silica inside a diatom cell. Exp Cell Res 34(3):605–608.  https://doi.org/10.1016/0014-4827(64)90248-4 CrossRefPubMedGoogle Scholar
  29. Reimann B, Lewin J, Volcani B (1966) Studies on the biochemistry and fine structure of silica shell formation in diatoms. II. The structure of the cell wall of Navicula pelliculosa (Breb.) Hilse. J Phycol 2(2):74–84.  https://doi.org/10.1111/j.1529-8817.1966.tb04597.x CrossRefPubMedGoogle Scholar
  30. Round FE, Crawford RM, Mann DG (1990) The diatoms. Cambridge University Press, BristolGoogle Scholar
  31. Schmid AM, Schultz D (1979) Wall morphogenesis in diatoms: deposition of silica by cytoplasmic vesicles. Protoplasma 100(3-4):267–288.  https://doi.org/10.1007/BF01279316 CrossRefGoogle Scholar
  32. Schmid AM (2001) Value of pyrenoids in the systematics of the diatoms: their morphology and ultrastructure. In Economou-Amilli A (Ed) Proceedings of the 16th international diatom symposium. Amvrosiou press, Athens, pp 1–32Google Scholar
  33. Schnepf E, Deichgraber G, Drebes G (1980) Morphogenetic processes in Attheya decora (Bacillariophyceae, Biddulphiineae). Pl Syst Evol 135(3-4):265–277.  https://doi.org/10.1007/BF00983191 CrossRefGoogle Scholar
  34. Stoermer E, Pankratz H, Bowen C (1965) Fine structure of the diatom Amphipleura pellucida. II. Cytoplasmic fine structure and frustule formation. Am J Bot 52(10):1067–1078.  https://doi.org/10.2307/2440138 CrossRefGoogle Scholar
  35. Sullivan CW (1979) Diatom mineralization of silicic acid. IV. Kinetics of soluble Si pool formation in exponentially growing and synchronized Navicula pelliculosa. J Phycol 15(2):210–216.  https://doi.org/10.1111/j.0022-3646.1979.00210.x CrossRefGoogle Scholar
  36. Sumper M, Kröger N (2004) Silica formation in diatoms: the function of long-chain polyamines and silaffins. J Mater Chem 14(14):2059–2065.  https://doi.org/10.1039/B401028K CrossRefGoogle Scholar
  37. Tanaka A, De Martino A, Amato A, Montsant A, Mathieu B, Rostang P, Tirichine L, Bowler C (2015) Ultrastructure and membrane traffic during cell division in the marine pennate diatom Phaeodactylum tricornutum. Protist 166(5):506–521.  https://doi.org/10.1016/j.protis.2015.07.005 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Tesson B, Hildebrand M (2010) Extensive and intimate association of the cytoskeleton with forming silica in diatoms: control over patterning on the meso- and micro-scale. PLoS One 5(12):e14300.  https://doi.org/10.1371/journal.pone.0014300 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Thompson AS, Rhodes JC, Pettman I (1988) Culture collection of algae and protozoa: catalogue of strains. Kendal,Titus Wilson and Son, CumbriaGoogle Scholar
  40. Van de Meene AML, Pickett-Heaps JD (2002) Valve morphogenesis in the centric diatom Proboscia alata Sundström. J Phycol 38(2):351–363.  https://doi.org/10.1046/j.1529-8817.2002.01124.x CrossRefGoogle Scholar
  41. Von Stosch HA (1981) Structural and histochemical observations on the organic layers of the diatom cell wall. In: Ross R (Ed) Proceedings of 6th symposium on recent and fossil diatoms. Koeltz, Koenigstein, pp 231–252Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Limnological Institute, Siberian BranchRussian Academy of SciencesIrkutskRussia

Personalised recommendations