Protoplasma

, Volume 255, Issue 3, pp 841–850 | Cite as

24-Epibrassinolide-induced alterations in the root cell walls of Cucumis sativus L. under Ca(NO3)2 stress

  • Ya-Hong An
  • Heng Zhou
  • Ying-Hui Yuan
  • Lin Li
  • Jin Sun
  • Sheng Shu
  • Shi-Rong Guo
Original Article
  • 38 Downloads

Abstract

Brassinosteroids (BRs) can effectively alleviate the oxidative stress caused by Ca(NO3)2 in cucumber seedlings. The root system is an essential organ in plants due to its roles in physical anchorage, water and nutrient uptake, and metabolite synthesis and storage. In this study, 24-epibrassinolide (EBL) was applied to the cucumber seedling roots under Ca(NO3)2 stress, and the resulting chemical and anatomical changes were characterized to investigate the roles of BRs in alleviating salinity stress. Ca(NO3)2 alone significantly induced changes in the components of cell wall, anatomical structure, and expression profiles of several lignin biosynthetic genes. Salt stress damaged several metabolic pathways, leading to cell wall reassemble. However, EBL promoted cell expansion and maintained optimum length of root system, alleviating the oxidative stress caused by Ca(NO3)2. The continuous transduction of EBL signal thickened the secondary cell wall of casparian band cells, thus resisting against ion toxicity and maintaining water transport.

Keywords

Cucumis sativus L. 24-Epibrassinolide Root Cell wall Lignin Ca(NO3)2 stress 

Abbreviations

BRs

Brassinosteroids

EBL

24-Epibrassinolide

BRI1

Brassonosteroid insensitive 1

BES1/BZR1

bri1 EMS suppressor 1/brassinazole resistant 1

PAL

Phenylalanine ammonialyase

F5H

Ferulate-5-hydroxylas

COMT

Caffeicacid-3-O-methyltransferase

CCoAOMT

Caffeoyl-CoA-3-O-methyltransferase

LAC

Laccase

LFA POD

Lignin-forming anionic peroxidase

BAK1

BRI1-associated kinase 1

BSU1

bri1 suppressor 1

BIN2

Brassinosteroid insensitive 2

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

709_2017_1187_MOESM1_ESM.xls (38 kb)
Supplementary Table 1 (XLS 38 kb)

References

  1. Agoda-Tandjawa G, Durand S, Gaillard C, Garnier C, Doublier JL (2012) Properties of cellulose/pectins composites: implication for structural and mechanical properties of cell wall. Carbohydr Polym 90(2):1081–1091.  https://doi.org/10.1016/j.carbpol.2012.06.047 CrossRefPubMedGoogle Scholar
  2. Bell AN, Magill E, Hallsworth JE, Timson DJ (2013) Effects of alcohols and compatible solutes on the activity of β-galactosidase. Appl Biochem Biotechnol 169(3):786–794.  https://doi.org/10.1007/s12010-012-0003-3 CrossRefPubMedGoogle Scholar
  3. Blumenkrantz N, Asboe-Hansen G (1973) New method for quantitative determination of uronic acids. Anal Biochem 54(2):484–489.  https://doi.org/10.1016/0003-2697(73)90377-1 CrossRefPubMedGoogle Scholar
  4. Clouse SD, Sasse JM (1998) Brassinosteroids: essential regulators of plant growth and development. Annu Rev Plant Physiol Plant Mol Biol 49(1):427–451.  https://doi.org/10.1146/annurev.arplant.49.1.427 CrossRefPubMedGoogle Scholar
  5. Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6(11):850–861.  https://doi.org/10.1038/nrm1746 CrossRefPubMedGoogle Scholar
  6. Cosgrove DJ, Jarvis MC (2012) Comparative structure and biomechanics of plant primary and secondary cell walls. Front Plant Sci 3:204.  https://doi.org/10.3389/fpls.2012.00204 CrossRefPubMedPubMedCentralGoogle Scholar
  7. de Lima RB, dos Santos TB, Vieira LG, de Lourdes Lúcio Ferrarese M, Ferrarese-Filho O, Donatti L, Boeger MR, de Oliveira Petkowicz CL (2014) Salt stress alters the cell wall polysaccharides and anatomy of coffee (Coffea arabica L.) leaf cells. Carbohydr Polym 112:686–694.  https://doi.org/10.1016/j.carbpol.2014.06.042 CrossRefPubMedGoogle Scholar
  8. Doblin MS, Pettolino F, Bacic A (2010) Plant cell walls: the skeleton of the plant world. Funct Plant Biol 37(5):357–381.  https://doi.org/10.1071/FP09279 CrossRefGoogle Scholar
  9. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28(3):350–356.  https://doi.org/10.1021/ac60111a017 CrossRefGoogle Scholar
  10. Dwevedi A, Kayastha AM (2009) A beta-galactosidase from pea seeds (PsBGAL): purification, stabilization, catalytic energetics, conformational heterogeneity, and its significance. J Agric Food Chem 57(15):7086–7096.  https://doi.org/10.1021/jf900874p CrossRefPubMedGoogle Scholar
  11. Friedrichsen DM, Joazeiro CA, Li J, Hunter T, Chory J (2000) Brassinosteroid-insensitive-1 is a ubiquitously expressed leucine-rich repeat receptor serine/threonine kinase 1. Plant Physiol 123(4):1247–1255.  https://doi.org/10.1104/pp.123.4.1247 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Gibbs DJ, Coates JC (2014) AtMYB93 is an endodermis-specific transcriptional regulator of lateral root development in Arabidopsis. Plant Signal Behav 9(10):e970406.  https://doi.org/10.4161/15592316.2014.970406 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Hacham Y, Holland N, Butterfield C, Ubeda-Tomas S, Bennett MJ, Chory J, Savaldi-Goldstein S (2011) Brassinosteroid perception in the epidermis controls root meristem size. Development 138(5):839–848.  https://doi.org/10.1242/dev.061804 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Hossain Z, Mcgarvey B, Amyot L, Gruber M, Jung J, Hannoufa A (2012) DIMINUTO 1 affects the lignin profile and secondary cell wall formation in Arabidopsis. Planta 235(3):485–498.  https://doi.org/10.1007/s00425-011-1519-4 CrossRefPubMedGoogle Scholar
  15. Iiyama K, Wallis AFA (1988) An improved acetyl bromide procedure for determining lignin in woods and wood pulps. Wood Sci Technol 22(3):271–280.  https://doi.org/10.1007/BF00386022 CrossRefGoogle Scholar
  16. Iiyama K, Wallis AFA (1990) Determination of lignin in herbaceous plants by an improved acetyl bromide procedure. J Sci Food Agric 51(2):145–161.  https://doi.org/10.1002/jsfa.2740510202 CrossRefGoogle Scholar
  17. Jia XL, Wang GL, Xiong F, XR Y, ZS X, Wang F, Xiong AS (2015) De novo assembly, transcriptome characterization, lignin accumulation, and anatomic characteristics: novel insights into lignin biosynthesis during celery leaf development. Sci Rep 5(1):8259.  https://doi.org/10.1038/srep08259 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Jin H, Do J, Shin SJ, Choi JW, Choi YI, Kim W, Kwon M (2014) Exogenously applied 24-epi brassinolide reduces lignification and alters cell wall carbohydrate biosynthesis in the secondary xylem of Liriodendron tulipifera. Phytochemistry 101:40–51.  https://doi.org/10.1016/j.phytochem.2014.02.003 CrossRefPubMedGoogle Scholar
  19. Karahara I, Ikeda A, Kondo T, Uetake Y (2004) Development of the Casparian strip in primary roots of maize under salt stress. Planta 219(1):41–47.  https://doi.org/10.1007/s00425-004-1208-7 CrossRefPubMedGoogle Scholar
  20. Khan M, Rozhon W, Bigeard J, Pflieger D, Husar S, Pitzschke A, Teige M, Jonak C, Hirt H, Poppenberger B (2013) Brassinosteroid-regulated GSK3/shaggy-like kinases phosphorylate mitogen-activated protein (MAP) kinase kinases, which control stomata development in Arabidopsis thaliana. J Biol Chem 288(11):7519–7527.  https://doi.org/10.1074/jbc.M112.384453 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Kim HJ, Triplett B (2008) Involvement of extracellular Cu/Zn superoxide dismutase in cotton fiber primary and secondary cell wall biosynthesis. Plant Signal Behav 3(12):1119–1121.  https://doi.org/10.4161/psb.3.12.7039 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Kim TW, Guan S, Sun Y, Deng Z, Tang W, Shang JX, Sun Y, Burlingame AL, Wang ZY (2009) Brassinosteroid signal transduction from cell-surface receptor kinases to nuclear transcription factors. Nat Cell Biol 11(10):1254–1260.  https://doi.org/10.1038/ncb1970 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Klahre U, Noguchi T, Fujioka S, Takatsuto S, Yokota T, Nomura T, Yoshida S, Chua NH (1998) The Arabidopsis DIMINUTO/DWARF1 gene encodes a protein involved in steroid synthesis. Plant Cell 10(10):1677–1690.  https://doi.org/10.1105/tpc.10.10.1677 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Lapierre C, Pollet B, Petit-Conil M, Toval G, Romero J, Pilate G, Leple JC, Boerjan W, Ferret VV, De Nadai V, Jouanin L (1999) Structural alterations of lignins in transgenic poplars with depressed cinnamyl alcohol dehydrogenase or caffeic acid O-methyltransferase activity have an opposite impact on the efficiency of industrial kraft pulping. Plant Physiol 119(1):153–163.  https://doi.org/10.1104/pp.119.1.153 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Li J, Chory J (1997) A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell 90(5):929–938.  https://doi.org/10.1016/S0092-8674(00)80357-8 CrossRefPubMedGoogle Scholar
  26. Lindner H, Müller LM, Boisson-Dernier A, Grossniklaus U (2012) CrRLK1L receptor-like kinases: not just another brick in the wall. Curr Opin Plant Biol 15(6):659–669.  https://doi.org/10.1016/j.pbi.2012.07.003 CrossRefPubMedGoogle Scholar
  27. Marshall CJ (1994) MAP kinase kinase kinase, MAP kinase kinase and MAP kinase. Curr Opin Genet Dev 4(1):82–89.  https://doi.org/10.1016/0959-437X(94)90095-7 CrossRefPubMedGoogle Scholar
  28. Peterson CA, Steudle E (1993) Lateral hydraulic conductivity of early metaxylem vessels in Zea mays L. roots. Planta 189:288–297CrossRefGoogle Scholar
  29. Robbins NE, Trontin C, Duan L, Dinneny JR (2014) Beyond the barrier: communication in the root through the endodermis. Plant Physiol 166(2):551–559.  https://doi.org/10.1104/pp.114.244871 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Sánchez-Aguayo I, Rodríguez-Galán JM, García R, Torreblanca J, Pardo JM (2004) Salt stress enhances xylem development and expression of S-adenosyl-l-methionine synthase in lignifying tissues of tomato plants. Planta 220(2):278–285.  https://doi.org/10.1007/s00425-004-1350-2 CrossRefPubMedGoogle Scholar
  31. Savaldi-Goldstein S, Peto C, Chory J (2007) The epidermis both drives and restricts plant shoot growth. Nature 446(7132):199–202.  https://doi.org/10.1038/nature05618 CrossRefPubMedGoogle Scholar
  32. Schrick K, Fujioka S, Takatsuto S, Stierhof YD, Stransky H, Yoshida S, Jürgens G (2004) A link between sterol biosynthesis, the cell wall, and cellulose in Arabidopsis. Plant J 38(2):227–243.  https://doi.org/10.1111/j.1365-313X.2004.02039.x CrossRefPubMedGoogle Scholar
  33. Schumacher K, Chory J (2000) Brassinosteroid signal transduction: still casting the actors. Curr Opin Plant Biol 3(1):79–84.  https://doi.org/10.1016/S1369-5266(99)00038-2 CrossRefPubMedGoogle Scholar
  34. Srivastava S, Vishwakarma RK, Arafat YA, Gupta SK, Khan BM (2015) Abiotic stress induces change in Cinnamoyl CoA reductase (CCR) protein abundance and lignin deposition in developing seedlings of Leucaena leucocephala. Physiol Mol Biol Plants 21(2):197–205.  https://doi.org/10.1007/s12298-015-0289-z CrossRefPubMedPubMedCentralGoogle Scholar
  35. Tsai CJ, Popko JL, Mielke MR, WJ H, Podila GK, Chiang VL (1998) Suppression of O-methyltransferase gene by homologous sense transgene in quaking aspen causes red-brown wood phenotypes. Plant Physiol 117(1):101–112.  https://doi.org/10.1104/pp.117.1.101 CrossRefPubMedPubMedCentralGoogle Scholar
  36. You TT, Mao JZ, Yuan TQ, Wen JL, Xu F (2013) Structural elucidation of the lignins from stems and foliage of Arundo donax linn. J Agric Food Chem 61(22):5361–5370.  https://doi.org/10.1021/jf401277v CrossRefPubMedGoogle Scholar
  37. Zhang GW, Liu ZL, Zhou JG, Zhu YL (2008) Effects of Ca(NO3)2 stress on oxidative damage, antioxidant enzymes activities and polyamine contents in roots of grafted and non-grafted tomato plants. Plant Growth Regul 56(1):7–19.  https://doi.org/10.1007/s10725-008-9281-8 CrossRefGoogle Scholar
  38. Zhao Q, Dixon RA (2011) Transcriptional networks for lignin biosynthesis: more complex than we thought? Trends Plant Sci 16(4):227–233.  https://doi.org/10.1016/j.tplants.2010.12.005 CrossRefPubMedGoogle Scholar
  39. Zhong R, Ye Z (2007) Regulation of cell wall biosynthesis. Curr Opin Plant Biol 10(6):564–572.  https://doi.org/10.1016/j.pbi.2007.09.001 CrossRefPubMedGoogle Scholar
  40. Zhu XF, Lei GJ, Jiang T, Liu Y, Li GX, Zheng SJ (2012) Cell wall polysaccharides are involved in P-deficiency-induced Cd exclusion in Arabidopsis thaliana. Planta 236(4):989–997.  https://doi.org/10.1007/s00425-012-1652-8 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2017

Authors and Affiliations

  • Ya-Hong An
    • 1
    • 2
  • Heng Zhou
    • 1
    • 2
  • Ying-Hui Yuan
    • 1
    • 2
  • Lin Li
    • 1
    • 2
  • Jin Sun
    • 1
    • 2
    • 3
  • Sheng Shu
    • 1
    • 2
    • 3
  • Shi-Rong Guo
    • 1
    • 2
    • 3
  1. 1.College of HorticultureNanjing Agricultural UniversityNanjingPeople’s Republic of China
  2. 2.Jiangsu Province Engineering Laboratory for Modern Facility Agriculture Technology and EquipmentNanjingPeople’s Republic of China
  3. 3.Nanjing Agricultural University (Suqian) Academy of Protected HorticultureSuqianPeople’s Republic of China

Personalised recommendations