Skip to main content

Advertisement

Log in

Tandem affinity purification of AtTERT reveals putative interaction partners of plant telomerase in vivo

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

A Correction to this article was published on 14 February 2018

This article has been updated

Abstract

The life cycle of telomerase involves dynamic and complex interactions between proteins within multiple macromolecular networks. Elucidation of these associations is a key to understanding the regulation of telomerase under diverse physiological and pathological conditions from telomerase biogenesis, through telomere recruitment and elongation, to its non-canonical activities outside of telomeres. We used tandem affinity purification coupled to mass spectrometry to build an interactome of the telomerase catalytic subunit AtTERT, using Arabidopsis thaliana suspension cultures. We then examined interactions occurring at the AtTERT N-terminus, which is thought to fold into a discrete domain connected to the rest of the molecule via a flexible linker. Bioinformatic analyses revealed that interaction partners of AtTERT have a range of molecular functions, a subset of which is specific to the network around its N-terminus. A significant number of proteins co-purifying with the N-terminal constructs have been implicated in cell cycle and developmental processes, as would be expected of bona fide regulatory interactions and we have confirmed experimentally the direct nature of selected interactions. To examine AtTERT protein-protein interactions from another perspective, we also analysed AtTERT interdomain contacts to test potential dimerization of AtTERT. In total, our results provide an insight into the composition and architecture of the plant telomerase complex and this will aid in delineating molecular mechanisms of telomerase functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

  • 14 February 2018

    In the published online version, the affiliations were mixed up. Corrected affiliation section is shown below. Also, the update has also been reflected in the author group section above.

References

  • Askree SH et al (2004) A genome-wide screen for Saccharomyces cerevisiae deletion mutants that affect telomere length. Proc Natl Acad Sci U S A 101:8658–8663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergemann AD, Johnson EM (1992) The HeLa Pur factor binds single-stranded DNA at a specific element conserved in gene flanking regions and origins of DNA replication. Mol Cell Biol 12:1257–1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berthiau AS et al (2006) Subtelomeric proteins negatively regulate telomere elongation in budding yeast. EMBO J 25:846–856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhattacharjee S, Lee LY, Oltmanns H, Cao H, Veena CJ, Gelvin SB (2008) IMPa-4, an Arabidopsis importin alpha isoform, is preferentially involved in agrobacterium-mediated plant transformation. Plant Cell 20:2661–2680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borges F, Gomes G, Gardner R, Moreno N, McCormick S, Feijo JA, Becker JD (2008) Comparative transcriptomics of Arabidopsis sperm cells. Plant Physiol 148:1168–1181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carbon S, Ireland A, Mungall CJ, Shu S, Marshall B, Lewis S (2009) AmiGO: online access to ontology and annotation data. Bioinformatics 25:288–289

    Article  CAS  PubMed  Google Scholar 

  • Chai W, Ford LP, Lenertz L, Wright WE, Shay JW (2002) Human Ku70/80 associates physically with telomerase through interaction with hTERT. J Biol Chem 277:47242–47247

    Article  CAS  PubMed  Google Scholar 

  • Cifuentes-Rojas C, Kannan K, Tseng L, Shippen DE (2011) Two RNA subunits and POT1a are components of Arabidopsis telomerase. Proc Natl Acad Sci U S A 108:73–78

    Article  CAS  PubMed  Google Scholar 

  • Cifuentes-Rojas C, Nelson AD, Boltz KA, Kannan K, She X, Shippen DE (2012) An alternative telomerase RNA in Arabidopsis modulates enzyme activity in response to DNA damage. Genes Dev 26:2512–2523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Citovsky V et al (2006) Subcellular localization of interacting proteins by bimolecular fluorescence complementation in planta. J Mol Biol 362:1120–1131

    Article  CAS  PubMed  Google Scholar 

  • Collins K (2006) The biogenesis and regulation of telomerase holoenzymes. Nat Rev Mol Cell Biol 7:484–494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collins K (2011) Single-stranded DNA repeat synthesis by telomerase. Curr Opin Chem Biol 15:643–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collins K, Greider CW (1995) Utilization of ribonucleotides and RNA primers by Tetrahymena telomerase. EMBO J 14:5422–5432

    CAS  PubMed  PubMed Central  Google Scholar 

  • Counter CM et al (1998) Dissociation among in vitro telomerase activity, telomere maintenance, and cellular immortalization. Proc Natl Acad Sci U S A 95:14723–14728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Craigon DJ, James N, Okyere J, Higgins J, Jotham J, May S (2004) NASCArrays: a repository for microarray data generated by NASC’s transcriptomics service. Nucleic Acids Res 32:D575–D577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dejardin J, Kingston RE (2009) Purification of proteins associated with specific genomic loci. Cell 136:175–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dokladal L, Honys D, Rana R, Lee L-Y, Gelvin SB, Sykorova E (2015) cDNA library screening identifies protein interactors potentially involved in non-telomeric roles of Arabidopsis telomerase. Front Plant Sci 6:985. doi:10.3389/fpls.2015.00985

    Article  PubMed  PubMed Central  Google Scholar 

  • Du Z, Zhou X, Ling Y, Zhang Z, Su Z (2010) agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res 38:W64–W70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duplakova N, Renak D, Hovanec P, Honysova B, Twell D, Honys D (2007) Arabidopsis Gene Family Profiler (aGFP)—user-oriented transcriptomic database with easy-to-use graphic interface. BMC Plant Biol 7:39. doi:10.1186/1471-2229-7-39

  • Dvorackova M, Fojtova M, Fajkus J (2015) Chromatin dynamics of plant telomeres and ribosomal genes. Plant J 83:18–37

    Article  CAS  PubMed  Google Scholar 

  • Egan ED, Collins K (2010) Specificity and stoichiometry of subunit interactions in the human telomerase holoenzyme assembled in vivo. Mol Cell Biol 30:2775–2786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egan ED, Collins K (2012) Biogenesis of telomerase ribonucleoproteins. RNA 18:1747–1759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eickbush TH (1997) Telomerase and retrotransposons: which came first? Science 277:911–912

    Article  CAS  PubMed  Google Scholar 

  • Eliseeva IA, Lyabin DN, Ovchinnikov LP (2013) Poly(A)-binding proteins: structure, domain organization, and activity regulation. Biochemistry (Mosc) 78:1377–1391

    Article  CAS  Google Scholar 

  • Eugster A et al (2006) The finger subdomain of yeast telomerase cooperates with Pif1p to limit telomere elongation. Nat Struct Mol Biol 13:734

    Article  CAS  PubMed  Google Scholar 

  • Fisher TS, Taggart AK, Zakian VA (2004) Cell cycle-dependent regulation of yeast telomerase by Ku. Nat Struct Mol Biol 11:1198–1205

    Article  CAS  PubMed  Google Scholar 

  • Fitzgerald MS, Riha K, Gao F, Ren S, McKnight TD, Shippen DE (1999) Disruption of the telomerase catalytic subunit gene from Arabidopsis inactivates telomerase and leads to a slow loss of telomeric DNA. Proc Natl Acad Sci U S A 96:14813–14818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forsythe HL, Jarvis JL, Turner JW, Elmore LW, Holt SE (2001) Stable association of hsp90 and p23, but not hsp70, with active human telomerase. J Biol Chem 276:15571–15574

    Article  CAS  PubMed  Google Scholar 

  • Frohnert C, Hutten S, Walde S, Nath A, Kehlenbach RH (2014) Importin 7 and Nup358 promote nuclear import of the protein component of human telomerase. PLoS One 9:e88887. doi:10.1371/journal.pone.0088887

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fu D, Collins K (2007) Purification of human telomerase complexes identifies factors involved in telomerase biogenesis and telomere length regulation. Mol Cell 28:773–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao H, Cervantes RB, Mandell EK, Otero JH, Lundblad V (2007) RPA-like proteins mediate yeast telomere function. Nat Struct Mol Biol 14:208–214

    Article  CAS  PubMed  Google Scholar 

  • Gatbonton T et al (2006) Telomere length as a quantitative trait: genome-wide survey and genetic mapping of telomere length-control genes in yeast. PLoS Genet 2:e35. doi:10.1371/journal.pgen.0020035

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gelinas AD, Paschini M, Reyes FE, Heroux A, Batey RT, Lundblad V, Wuttke DS (2009) Telomere capping proteins are structurally related to RPA with an additional telomere-specific domain. Proc Natl Acad Sci U S A 106:19298–19303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giannone RJ, McDonald HW, Hurst GB, Shen RF, Wang Y, Liu Y (2010) The protein network surrounding the human telomere repeat binding factors TRF1, TRF2, and POT1. PLoS One 5:e12407. doi:10.1371/journal.pone.0012407

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grolimund L, Aeby E, Hamelin R, Armand F, Chiappe D, Moniatte M, Lingner J (2013) A quantitative telomeric chromatin isolation protocol identifies different telomeric states. Nat Commun 4:2848

    Article  PubMed  CAS  Google Scholar 

  • Harrington L et al (1997) A mammalian telomerase-associated protein. Science 275:973–977

    Article  CAS  PubMed  Google Scholar 

  • Her J, Chung IK (2012) The AAA-ATPase NVL2 is a telomerase component essential for holoenzyme assembly. Biochem Biophys Res Commun 417:1086–1092

    Article  CAS  PubMed  Google Scholar 

  • Holt SE et al (1999) Functional requirement of p23 and Hsp90 in telomerase complexes. Genes Dev 13:817–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horak J et al (2008) The Arabidopsis thaliana response regulator ARR22 is a putative AHP phospho-histidine phosphatase expressed in the chalaza of developing seeds. BMC Plant Biol 8:77

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Isemer R, Mulisch M, Schafer A, Kirchner S, Koop HU, Krupinska K (2012) Recombinant Whirly1 translocates from transplastomic chloroplasts to the nucleus. FEBS Lett 586:85–88

    Article  CAS  PubMed  Google Scholar 

  • Jacobs SA, Podell ER, Cech TR (2006) Crystal structure of the essential N-terminal domain of telomerase reverse transcriptase. Nat Struct Mol Biol 13:218–225

    Article  CAS  PubMed  Google Scholar 

  • Jamburuthugoda VK, Eickbush TH (2014) Identification of RNA binding motifs in the R2 retrotransposon-encoded reverse transcriptase. Nucleic Acids Res 42:8405–8415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang J et al (2013) The architecture of Tetrahymena telomerase holoenzyme. Nature 496:187–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karamysheva ZN, Surovtseva YV, Vespa L, Shakirov EV, Shippen DE (2004) A C-terminal Myb extension domain defines a novel family of double-strand telomeric DNA-binding proteins in Arabidopsis. J Biol Chem 279:47799–47807

    Article  CAS  PubMed  Google Scholar 

  • Katzenellenbogen RA, Egelkrout EM, Vliet-Gregg P, Gewin LC, Gafken PR, Galloway DA (2007) NFX1-123 and poly(A) binding proteins synergistically augment activation of telomerase in human papillomavirus type 16 E6-expressing cells. J Virol 81:3786–3796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khurts S et al (2004) Nucleolin interacts with telomerase. J Biol Chem 279:51508–51515

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Park SM, Kang MR, Oh SY, Lee TH, Muller MT, Chung IK (2005) Ubiquitin ligase MKRN1 modulates telomere length homeostasis through a proteolysis of hTERT. Genes Dev 19:776–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krause K, Kilbienski I, Mulisch M, Rodiger A, Schafer A, Krupinska K (2005) DNA-binding proteins of the Whirly family in Arabidopsis thaliana are targeted to the organelles. FEBS Lett 579:3707–3712

    Article  CAS  PubMed  Google Scholar 

  • Kuchar M, Fajkus J (2004) Interactions of putative telomere-binding proteins in Arabidopsis thaliana: identification of functional TRF2 homolog in plants. FEBS Lett 578:311–315

    Article  CAS  PubMed  Google Scholar 

  • Kwon C, Chung IK (2004) Interaction of an Arabidopsis RNA-binding protein with plant singlestranded telomeric DNA modulates telomerase activity. J Biol Chem 279:12812–12818

  • Lee J et al (2008) TERT promotes cellular and organismal survival independently of telomerase activity. Oncogene 27:3754–3760

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Khadka P, Baek SH, Chung IK (2010) CHIP promotes human telomerase reverse transcriptase degradation and negatively regulates telomerase activity. J Biol Chem 285:42033–42045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee L-Y et al (2012) Screening a cDNA library for protein-protein interactions directly in planta. Plant Cell 24:1746–1759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Wong WH (2001a) Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc Natl Acad Sci U S A 98:31–36

    Article  CAS  PubMed  Google Scholar 

  • Li C, Wong WH (2001b) Model-based analysis of oligonucleotide arrays: model validation, design issues and standard error application. Genome Biol 2:RESEARCH0032

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lingner J, Cech TR (1996) Purification of telomerase from Euplotes aediculatus: requirement of a primer 3′ overhang. Proc Natl Acad Sci U S A 93:10712–10717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Majerska J, Sykorova E, Fajkus J (2011) Non-telomeric activities of telomerase. Mol BioSyst 7:1013–1023

    Article  CAS  PubMed  Google Scholar 

  • Makovets S, Blackburn EH (2009) DNA damage signalling prevents deleterious telomere addition at DNA breaks. Nat Cell Biol 11:1383–1386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Min B, Collins K (2009) An RPA-related sequence-specific DNA-binding subunit of telomerase holoenzyme is required for elongation processivity and telomere maintenance. Mol Cell 36:609–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moriarty TJ, Marie-Egyptienne DT, Autexier C (2004) Functional organization of repeat addition processivity and DNA synthesis determinants in the human telomerase multimer. Mol Cell Biol 24:3720–3733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moser BA, Nakamura TM (2009) Protection and replication of telomeres in fission yeast. Biochem Cell Biol 87:747–758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mozdy AD, Podell ER, Cech TR (2008) Multiple yeast genes, including Paf1 complex genes, affect telomere length via telomerase RNA abundance. Mol Cell Biol 28:4152–4161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nittis T et al (2010) Revealing novel telomere proteins using in vivo cross-linking, tandem affinity purification, and label-free quantitative LC-FTICR-MS. Mol Cell Proteomics 9:1144–1156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oguchi K, Liu H, Tamura K, Takahashi H (1999) Molecular cloning and characterization of AtTERT, a telomerase reverse transcriptase homolog in Arabidopsis thaliana. FEBS Lett 457:465–469

    Article  CAS  PubMed  Google Scholar 

  • Oh W et al (2010) Hdm2 negatively regulates telomerase activity by functioning as an E3 ligase of hTERT. Oncogene 29:4101–4112

    Article  CAS  PubMed  Google Scholar 

  • Okamoto N et al (2011) Maintenance of tumor initiating cells of defined genetic composition by nucleostemin. Proc Natl Acad Sci U S A 108:20388–20393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ouellette MM, Aisner DL, Savre-Train I, Wright WE, Shay JW (1999) Telomerase activity does not always imply telomere maintenance. Biochem Biophys Res Commun 254:795–803

    Article  CAS  PubMed  Google Scholar 

  • Pendle AF et al (2005) Proteomic analysis of the Arabidopsis nucleolus suggests novel nucleolar functions. Mol Biol Cell 16:260–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petrov AV, Dokudovskaya SS, Sokolov KA, Lavrik OI, Favre A, Dontsova OA, Bogdanov AA (1998) Telomerase from Saccharomyces cerevisiae contains several protein subunits and may have different activities depending on the protein content. FEBS Lett 436:35–40

    Article  CAS  PubMed  Google Scholar 

  • Prescott J, Blackburn EH (1997) Functionally interacting telomerase RNAs in the yeast telomerase complex. Genes Dev 11:2790–2800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ray S, Karamysheva Z, Wang L, Shippen DE, Price CM (2002) Interactions between telomerase and primase physically link the telomere and chromosome replication machinery. Mol Cell Biol 22:5859–5868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribaud V, Ribeyre C, Damay P, Shore D (2012) DNA-end capping by the budding yeast transcription factor and subtelomeric binding protein Tbf1. EMBO J 31:138–149

    Article  CAS  PubMed  Google Scholar 

  • Rossignol P, Collier S, Bush M, Shaw P, Doonan JH (2007) Arabidopsis POT1A interacts with TERT-V(I8), an N-terminal splicing variant of telomerase. J Cell Sci 120:3678–3687

    Article  CAS  PubMed  Google Scholar 

  • Rubio V, Shen Y, Saijo Y, Liu Y, Gusmaroli G, Dinesh-Kumar SP, Deng XW (2005) An alternative tandem affinity purification strategy applied to Arabidopsis protein complex isolation. Plant J 41:767–778

    Article  CAS  PubMed  Google Scholar 

  • Safak M, Gallia GL, Khalili K (1999) Reciprocal interaction between two cellular proteins, Puralpha and YB-1, modulates transcriptional activity of JCVCY in glial cells. Mol Cell Biol 19:2712–2723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santos JH, Meyer JN, Skorvaga M, Annab LA, Van Houten B (2004) Mitochondrial hTERT exacerbates free-radical-mediated mtDNA damage. Aging Cell 3:399–411

    Article  CAS  PubMed  Google Scholar 

  • Schmidt JC, Cech TR (2015) Human telomerase: biogenesis, trafficking, recruitment, and activation. Genes Dev 29:1095–1105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schrumpfova PP, Vychodilova I, Dvorackova M, Majerska J, Dokladal L, Schorova S, Fajkus J (2014) Telomere repeat binding proteins are functional components of Arabidopsis telomeres and interact with telomerase. Plant J 77:770–781

    Article  PubMed  CAS  Google Scholar 

  • Schrumpfova PP, Vychodilova I, Hapala J, Schorova S, Dvoracek V, Fajkus J (2016) Telomere binding protein TRB1 is associated with promoters of translation machinery genes in vivo. Plant Mol Biol 90:189–206

    Article  CAS  PubMed  Google Scholar 

  • Sealey DC (2010) Regulation of telomerase by DNA and protein interactions. University of Toronto

  • Sealey DC, Zheng L, Taboski MA, Cruickshank J, Ikura M, Harrington LA (2010) The N-terminus of hTERT contains a DNA-binding domain and is required for telomerase activity and cellular immortalization. Nucleic Acids Res 38:2019–2035

    Article  CAS  PubMed  Google Scholar 

  • Seimiya H, Sawada H, Muramatsu Y, Shimizu M, Ohko K, Yamane K, Tsuruo T (2000) Involvement of 14-3-3 proteins in nuclear localization of telomerase. EMBO J 19:2652–2661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sevcikova T, Bisova K, Fojtova M, Lukesova A, Hrckova K, Sykorova E (2013) Completion of cell division is associated with maximum telomerase activity in naturally synchronized cultures of the green alga Desmodesmus quadricauda. FEBS Lett 587:743–748

    Article  CAS  PubMed  Google Scholar 

  • Stewart JA, Chaiken MF, Wang F, Price CM (2012) Maintaining the end: roles of telomere proteins in end-protection, telomere replication and length regulation. Mutat Res 730:12–19

    Article  CAS  PubMed  Google Scholar 

  • Sun Q, Zybailov B, Majeran W, Friso G, Olinares PD, van Wijk KJ (2009) PPDB, the Plant Proteomics Database at Cornell. Nucleic Acids Res 37:D969–D974

    Article  CAS  PubMed  Google Scholar 

  • Surovtseva YV, Shakirov EV, Vespa L, Osbun N, Song X, Shippen DE (2007) Arabidopsis POT1 associates with the telomerase RNP and is required for telomere maintenance. EMBO J 26:3653–3661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sykorova E, Leitch AR, Fajkus J (2006) Asparagales telomerases which synthesize the human type of telomeres. Plant Mol Biol 60:633–646

    Article  CAS  PubMed  Google Scholar 

  • Szklarczyk D et al (2015) STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43:D447–D452

    Article  CAS  PubMed  Google Scholar 

  • Taggart AK, Teng SC, Zakian VA (2002) Est1p as a cell cycle-regulated activator of telomere-bound telomerase. Science 297:1023–1026

    Article  CAS  PubMed  Google Scholar 

  • Teixeira MT, Gilson E (2007) La sets the tone for telomerase assembly. Nat Struct Mol Biol 14:261–262

    Article  CAS  PubMed  Google Scholar 

  • Tomlinson RL, Ziegler TD, Supakorndej T, Terns RM, Terns MP (2006) Cell cycle-regulated trafficking of human telomerase to telomeres. Mol Biol Cell 17:955–965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomlinson RL, Abreu EB, Ziegler T, Ly H, Counter CM, Terns RM, Terns MP (2008) Telomerase reverse transcriptase is required for the localization of telomerase RNA to cajal bodies and telomeres in human cancer cells. Mol Biol Cell 19:3793–3800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tremousaygue D, Manevski A, Bardet C, Lescure N, Lescure B (1999) Plant interstitial telomere motifs participate in the control of gene expression in root meristems. Plant J 20:553–561

    Article  CAS  PubMed  Google Scholar 

  • Ungar L, Yosef N, Sela Y, Sharan R, Ruppin E, Kupiec M (2009) A genome-wide screen for essential yeast genes that affect telomere length maintenance. Nucleic Acids Res 37:3840–3849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Leene J et al (2007) A tandem affinity purification-based technology platform to study the cell cycle interactome in Arabidopsis thaliana. Mol Cell Proteomics 6:1226–1238

    Article  CAS  PubMed  Google Scholar 

  • Van Leene J et al (2010) Targeted interactomics reveals a complex core cell cycle machinery in Arabidopsis thaliana. Mol Syst Biol 6:397. doi:10.1038/msb.2010.53

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Leene J et al (2011) Isolation of transcription factor complexes from Arabidopsis cell suspension cultures by tandem affinity purification. Methods Mol Biol 754:195–218

    Article  CAS  PubMed  Google Scholar 

  • Venteicher AS, Meng Z, Mason PJ, Veenstra TD, Artandi SE (2008) Identification of ATPases pontin and reptin as telomerase components essential for holoenzyme assembly. Cell 132:945–957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watson JM, Riha K (2010) Comparative biology of telomeres: where plants stand. FEBS Lett 584:3752–3759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wisniewski JR, Zougman A, Nagaraj N, Mann M (2009) Universal sample preparation method for proteome analysis. Nat Methods 6:359–362

    Article  CAS  PubMed  Google Scholar 

  • Wisniewski JR, Zielinska DF, Mann M (2011) Comparison of ultrafiltration units for proteomic and N-glycoproteomic analysis by the filter-aided sample preparation method. Anal Biochem 410:307–309

    Article  CAS  PubMed  Google Scholar 

  • Witkin KL, Collins K (2004) Holoenzyme proteins required for the physiological assembly and activity of telomerase. Genes Dev 18:1107–1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Witkin KL, Prathapam R, Collins K (2007) Positive and negative regulation of Tetrahymena telomerase holoenzyme. Mol Cell Biol 27:2074–2083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yi X, Shay JW, Wright WE (2001) Quantitation of telomerase components and hTERT mRNA splicing patterns in immortal human cells. Nucleic Acids Res 29:4818–4825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoo HH, Kwon C, Lee MM, Chung IK (2007) Single-stranded DNA binding factor AtWHY1 modulates telomere length homeostasis in Arabidopsis. Plant J 49:442–451

    Article  CAS  PubMed  Google Scholar 

  • Zachova D et al (2013) Structure-function relationships during transgenic telomerase expression in Arabidopsis. Physiol Plant 149:114–126

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Hartwig B, James GV, Schneeberger K, Turck F (2016) Complementary activities of TELOMERE REPEAT BINDING proteins and Polycomb group complexes in transcriptional regulation of target genes. Plant Cell 28:87–101

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. David Potěšil, Prof. Jiří Fajkus and Assoc. Prof. Zbyněk Zdráhal (CEITEC, Masaryk University Brno, Czech Republic) and members of the research group Molecular Complexes of Chromatin and Proteomics Core Facility for fruitful discussions during past years of the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Sýkorová.

Ethics declarations

Funding

This work was supported by the Grant Agency of the Czech Republic (13-06943S to ES), by the Ministry of Education, Youth and Sports of the Czech Republic under the project CEITEC 2020 (LQ1601), by the Academy of Sciences of the Czech Republic (RVO 68081707) and Masaryk University (MUNI/C/0981/2010 to JM). The MS analyses were carried out with support of the Proteomics Core Facility of CEITEC.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Peter Nick

A correction to this article is available online at https://doi.org/10.1007/s00709-018-1224-2.

Electronic supplementary material

ESM 1

(PDF 30065 kb)

Table S2

(XLSX 767 kb)

Table S3

(XLSX 427 kb)

Table S4

(XLSX 407 kb)

Table S5

(XLSX 35 kb)

Table S6

(XLSX 80 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majerská, J., Schrumpfová, P.P., Dokládal, L. et al. Tandem affinity purification of AtTERT reveals putative interaction partners of plant telomerase in vivo. Protoplasma 254, 1547–1562 (2017). https://doi.org/10.1007/s00709-016-1042-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-016-1042-3

Keywords

Navigation