Skip to main content

Advertisement

Log in

Calcium alleviates cadmium-induced inhibition on root growth by maintaining auxin homeostasis in Arabidopsis seedlings

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Cadmium (Cd) toxicity has been widely studied in different plant species. However, the mechanism involved in its toxicity and the cell response to Cd has not been well established. In the present study, we investigated the possible mechanism of calcium (Ca) in protecting Arabidopsis from Cd toxicity. The results showed that 50 μM Cd significantly inhibited the seedling growth and decreased the chlorophyll content in Arabidopsis. Specifically, the primary root (PR) length was decreased but the lateral root (LR) number was increased under Cd stress. Furthermore, Cd enhanced the hydrogen peroxide (H2O2) content and lipid peroxidation as indicated by malondialdehyde (MDA) accumulation. Cd also altered the level and the distribution of auxin in PR tips (as evidenced by DR5::GUS and PIN:GFP reporter expression) and the expression of several putative auxin biosynthetic, catabolic, and transport pathway-related genes. Application of 3 mM Ca alleviated the inhibition of Cd on the root growth. Ca application not only led to reducing oxidative injuries but also restoring the normal auxin transport and distribution in Arabidopsis root under Cd stress. Taken together, these results suggest that Ca alleviates the root growth inhibition caused by Cd through maintaining auxin homeostasis in Arabidopsis seedlings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

APX:

Ascorbate peroxidase

Aux/IAA:

Auxin/indole-3-acetic acid

Ca:

Calcium

CAT:

Catalase

CAX2:

Calcium exchanger 2

Cd:

Cadmium

CPx-ATPases:

A class of P-type ATPases that pump heavy metals

EDTA:

Ethylene diamine tetraacetic acid

EGTA:

Ethylene glycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid

GH3:

Gretchen Hagen3

GSH:

Glutathione

GUS:

β-Glucuronidase

H2O2 :

Hydrogen peroxide

HMA4:

Heavy metal-associated domains 4

IAA:

Indole-3-acetic acid

IAM:

Indole-3-acetamide

IAN:

Indole-3-acetonitrile

IAOx:

Indole-3-acetaldoxime

IBA:

Indole-3-butyric acid

IPA:

Indole-3-pyruvic acid

IRT1:

Iron-regulated transporter

LCT1:

Low-affinity cation transporter

LR:

Lateral root

1/2MS:

Half-strength Murashige and Skoog

NIT:

Nitrilases

PIN:

PIN-FORMED

POD:

Peroxidase

PR:

Primary root

ROS:

Reactive oxygen species

SIMR:

Stress-induced morphogenic response

SOD:

Superoxide dismutase

TAA:

Aminotransferase

TAM:

Tryptamine

TCA:

Trichloroacetic acid

Trp:

Tryptophan

X-Gluc:

5-Bromo-4-chloro-3-indolyl-β-d-glucuronic acid

WT:

Wild-type

References

  • Ádám AL, Bestwick CS, Barna B, Mansfield JW (1995) Enzymes regulating the accumulation of active oxygen species during the hypersensitive reaction of bean to Pseudomonas syringae pv. Phaseolicola. Planta 197:240–249

    Article  Google Scholar 

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  PubMed  CAS  Google Scholar 

  • Ahmad P, Jaleel CA, Salem MA, Nabi G, Sharma S (2010) Roles of enzymatic and non-enzymatic antioxidants in plants during abiotic stress. Crit Rev Biotechnol 30:161–175

    Article  PubMed  CAS  Google Scholar 

  • Ahmad P, Nabi G, Ashraf M (2011) Cadmium-induced oxidative damage in mustard [Brassica juncea (L.) Czern. & Coss.] plants can be alleviated by salicylic acid. S Afr J Bot 77:36–44

    Article  CAS  Google Scholar 

  • Ahmad P, Sarwat M, Bhat NA, Wani MR, Kazi AG, Tran LS (2015) Alleviation of cadmium toxicity in Brassica juncea L. (Czern. & Coss.) by calcium application involves various physiological and biochemical strategies. PLoS One 10:e0114571

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aidid SB, Okamoto H (1993) Responses of elongation growth rate, turgor pressure and cell wall extensibility of stem cells of Impatiens balsamina to lead, cadmium and zinc. Biometals 6:245–249

    Article  CAS  Google Scholar 

  • Allan AC, Rubery PH (1991) Calcium deficiency and auxin transport in Cucurbita pepo L. seedlings. Planta 183:604–612

    Article  PubMed  CAS  Google Scholar 

  • Amudha J, Balasubramani G (2011) Recent molecular advances to combat abiotic stress tolerance in crop plants. Biotechnol Mol Biol Rev 6:31–58

    CAS  Google Scholar 

  • Antonovics J, Bradshaw AD, Turner RG (1971) Heavy metal tolerance in plants. Adv Environ Sci Technol 7:1–85

    Google Scholar 

  • Banguelos G, Bangerth F, Marschner H (1987) Relationship between polar basipetal auxin transport and acropetal Ca2+ transport into tomato fruits. Plant Physiol 71:321–327

    Article  Google Scholar 

  • Benavides MP, Gallego SM, Tomaro M (2005) Cadmium toxicity in plants. Braz J Plant Physiol 17:21–34

    Article  CAS  Google Scholar 

  • Berleth T, Sachs T (2001) Plant morphogenesis: long-distance coordination and local patterning. Curr Opin Plant Biol 4:57–62

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Bramm J (1992) Regulated expression of the calmodulin-related TCH genes in cultured Arabidopsis cells: induction by calcium and heat shock. Proc Natl Acad Sci U S A 89:3213–3216

    Article  Google Scholar 

  • Chen YH, Kao CH (2012) Calcium is involved in nitric oxide- and auxin-induced lateral root formation in rice. Protoplasma 249:187–195

    Article  PubMed  CAS  Google Scholar 

  • Chen WW, Yang JL, Qin C, Jin CW, Mo JH, Ye T, Zheng SJ (2010) Nitric oxide acts downstream of auxin to trigger root ferric-chelate reductase activity in response to iron deficiency in Arabidopsis thaliana. Plant Physiol 154:810–819

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Choi YE, Harada E, Wada M, Tsuboi H, Morita Y, Kusano T, Sano H (2001) Detoxification of cadmium in tobacco plants: formation and active excretion of crystals containing cadmium and calcium through trichomes. Planta 213:45–50

    Article  PubMed  CAS  Google Scholar 

  • Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88:1707–1719

    Article  PubMed  CAS  Google Scholar 

  • Colorado P, Rodriguez A, Nicolas G, Rodriguez D (1994) Abscisic acid and stress regulate gene expression during germination of chick-pea seeds. Possible role of calcium. Physiol Plant 91:461–467

    Article  CAS  Google Scholar 

  • Cosio C, Mrtinoia E, Keller C (2004) Hyperaccumulation of cadmium and zinc in Thlaspi caerulescens and Arabidopsis halleri at the leaf cellular level. Plant Physiol 134:716–725

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • dela Fuente RK, Leopold AC (1973) A role for calcium in auxin transport. Plant Physiol 51:845–847

    Article  Google Scholar 

  • Elobeid M, Gōbel C, Feussner I, Polle A (2012) Cadmium interferes with auxin physiology and lignification in poplar. J Exp Bot 63:1413–1421

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Farzadfar S, Zarinkamar F, Modarres-Sanavy SA, Hojati M (2013) Exogenously applied calcium alleviates cadmium toxicity in Matricaria chamomilla L. plants. Environ Sci Pollut Res 20:1413–1422

    Article  CAS  Google Scholar 

  • Feng JG, Shi QH, Wang XF, Wei M, Yang FJ, Xu HN (2010) Silicon supplementation ameliorated the inhibition of photosynthesis and nitrate metabolism by cadmium (Cd) toxicity in Cucumis sativus L. Sci Hortic 123:521–530

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 155:2–18

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Garnier L, Simon-Plas F, Thuleau P, Agnel JP, Blein JP, Ranjeva R, Montillet JL (2006) Cd affects tobacco cells by a series of three waves of reactive oxygen species that contribute to cytotoxicity. Plant Cell Environ 29:1956–1969

    Article  PubMed  CAS  Google Scholar 

  • Grunewald W, Friml J (2010) The march of the PINs: developmental plasticity by dynamic polar targeting in plant cells. EMBO J 29:2700–2714

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gussarson M, Asp H, Adalsteinsson S, Jensén P (1996) Enhancement of Cd effects on growth and nutrient composition of birch (Betula pendula) by buthionine sulphoxinine (BSO). J Exp Bot 47:211–215

    Article  Google Scholar 

  • Hausmann N, Fengler S, Hennig A, Franz-Wachtel M, Hampp R, Neef M (2014) Cytosolic calcium, hydrogen peroxide and related gene expression and protein modulation in Arabidopsis thaliana cell cultures respond immediately to altered gravitation: parabolic flight data. Plant Biol 16:120–128

    Article  PubMed  Google Scholar 

  • Hirschi KD (2004) The calcium conundrum. Both versatile nutrient and specific signal. Plant Physiol 136:2438–2442

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hirschi KD, Korenkov VD, Wilganowski NL, Wagner GJ (2000) Expression of Arabidopsis CAX2 in tobacco. Altered metal accumulation and increased manganese tolerance. Plant Physiol 124:125–133

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hodges DM, Delong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604–711

    Article  CAS  Google Scholar 

  • Hu YF, Yang LJ, Na XF, You J, Hu W, Liang XL, Liu J, Mao LN, Wang XM, Wang HH, Bi YR (2012) Narciclasine inhibits the responses of Arabidopsis roots to auxin. Planta 236:597–612

    Article  PubMed  CAS  Google Scholar 

  • Hu YF, Zhou GY, Na XF, Yang LJ, Nan WB, Liu X, Zhang YQ, Li JL, Bi YR (2013) Cadmium interferes with maintenance of auxin homeostasis in Arabidopsis seedlings. J Plant Physiol 170:965–975

    Article  PubMed  CAS  Google Scholar 

  • Huang YX, Liao BH, Xiao LT, Liu SC, Wang ZK (2006) Effects of Cd2+ on seedling growth and phytohormone contents of Glycine max. J Environ Sci 27:1398–1401

    CAS  Google Scholar 

  • Jaleel CA, Manivannan P, Sankar B, Kishorekumar A, Panneerselvam R (2007a) Calcium chloride effects on salinity-induced oxidative stress, proline metabolism and indole alkaloid accumulation in Catharanthus roseus. C R Biol 330:674–683

    Article  PubMed  CAS  Google Scholar 

  • Jaleel CA, Manivannan P, Sankar B, Kishorekumar A, Gopi R, Somasundaram R, Panneerselvam R (2007b) Water deficit stress mitigation by calcium chloride in Catharanthus roseus: effects on oxidative stress, proline metabolism and indole alkaloid accumulation. Colloids Surf B: Biointerfaces 60:110–116

    Article  PubMed  CAS  Google Scholar 

  • Janda T, Szalai G, Tari I, Páldi E (1999) Hydroponic treatment with salicylic acid decreases the effects of chilling in maize (Zea mays L) plants. Planta 208:175–180

    Article  CAS  Google Scholar 

  • Jiang YW, Huang BR (2001) Effects of calcium on antioxidant activities and water relations associated with heat tolerance in two cool-season grasses. J Exp Bot 52:341–349

    Article  PubMed  CAS  Google Scholar 

  • John R, Ahmad P, Gadgil K, Sharma S (2009) Heavy metal toxicity: effect on plant growth, biochemical parameters and metal accumulation by Brassica juncea L. Int J Plant Prod 3:65–76

    CAS  Google Scholar 

  • Kader MA, Lindberg S (2010) Cytosolic calcium and pH signaling in plants under salinity stress. Plant Signal Behav 5:233–238

    Article  PubMed  PubMed Central  Google Scholar 

  • Kinraide TB (1998) Three mechanisms for the calcium alleviation of mineral toxicities. Plant Physiol 118:513–520

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kinraide TB, Perler JF, Parker DR (2004) Relative effectiveness of calcium and magnesium in the alleviation of rhizotoxicity in wheat induced by copper, zinc, aluminum, sodium, and low pH. Plant Soil 259:201–208

    Article  CAS  Google Scholar 

  • Kolbert Z, Petö A, Lehotai N, Feigl G, Erdei L (2012) Long-term copper (Cu2+) exposure impacts on auxin, nitric oxide (NO) metabolism and morphology of Arabidopsis thaliana L. Plant Growth Regul 68:151–159

    Article  CAS  Google Scholar 

  • Kollmeier M, Felle HH, Horst WJ (2000) Genotypical differences in aluminum resistance of maize are expressed in the distal part of the transition zone. Is reduced basipetal auxin flow involved in inhibition of root elongation by aluminum? Plant Physiol 122:945–956

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kováčik J, Klejdus B, Hedbavny J, Bačkor M (2009) Salicylic acid alleviates NaCl-induced changes in the metabolism of Matricaria chamomilla plants. Ecotoxicology 18:544–554

    Article  PubMed  CAS  Google Scholar 

  • Kovtun Y, Chiu WL, Tena G, Sheen J (2000) Functional analysis of oxidative stress-activated mitogen activated protein kinase cascade in plants. PANS 97:2940–2945

    Article  CAS  Google Scholar 

  • Küpper H, Küpper F, Spiller M (1996) Environmental relevance of heavy metal substituted chlorophylls using the example of water plants. J Exp Bot 47:259–266

    Article  Google Scholar 

  • Lang ML, Zhang YX, Chai TY (2005) Identification of genes up-regulated in response to Cd exposure in Brassica juncea L. Gene 363:151–158

    Article  CAS  Google Scholar 

  • Lanteri ML, Pagnussat GC, Lamattina L (2006) Calcium and calcium-dependent protein kinases are involved in nitric oxide- and auxin-induced adventitious root formation in cucumber. J Exp Bot 57:1341–1351

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Mulkey T, Evans M (1983) Gravity-induced polar transport of calcium across root tips of maize. Plant Physiol 73:874–876

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lequeux H, Hermans C, Lutts S, Verbruggen N (2010) Response to copper excess in Arabidopsis thaliana: impact on the root system architecture, hormone distribution, lignin accumulation and mineral profile. Plant Physiol Biochem 48:673–682

    Article  PubMed  CAS  Google Scholar 

  • Li BH, Li Q, Su YH, Chen H, Xiong LM, Mi GH, Kronzucker HJ, Shi WM (2011) Shoot-supplied ammonium targets the root auxin influx carrier AUX1 and inhibits lateral root emergence in Arabidopsis. Plant Cell Environ 34:933–946

    Article  PubMed  CAS  Google Scholar 

  • McAinsh MR, Clayton H, Mansfield TA, Hetherington AM (1996) Changes in stomatal behavior and guard cell cytosolic free calcium in response to oxidative stress. Plant Physiol 111:1031–1042

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  PubMed  CAS  Google Scholar 

  • Najeeb U, Jilani G, Ali S, Sarwar M, Xu L, Zhou WJ (2011) Insight into cadmium induced physiological and ultra-structural disorders in Juncus effusus L. and its remediation through exogenous citric acid. J Hazard Mater 186:565–574

    Article  PubMed  CAS  Google Scholar 

  • Normanly J (2010) Approaching cellular and molecular resolution of auxin biosynthesis and metabolism. Cold Spring Harb Perspect Biol 2:a001594

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Padmaja K, Prasad DDK, Prasad ARK (1990) Inhibition of chlorophyll synthesis in Phaseolus vulgaris seedlings by cadmium acetate. Photosynthetica 24:399–405

    CAS  Google Scholar 

  • Park JE, Park JY, Kim YS, Staswick PE, Jeon J, Yun J, Kim SY, Kim J, Lee YH, Park CM (2007) GH3-mediated auxin homeostasis links growth regulation with stress adaptation response in Arabidopsis. J Biol Chem 282:10036–10046

    Article  PubMed  CAS  Google Scholar 

  • Pasternak T, Rudas V, Potters G, Jansen MAK (2005) Morphogenic effects of abiotic stress: reorientation of growth in Arabidopsis thaliana seedlings. Environ Exp Bot 53:299–314

    Article  Google Scholar 

  • Pelagio-Flores R, Ortíz-Castro R, Méndez-Bravo A, Macías-Rodríguez L, López-Bucio J (2011) Serotonin, a tryptophan-derived signal conserved in plants and animals, regulates root system architecture probably acting as a natural auxin inhibitor in Arabidopsis thaliana. Plant Cell Physiol 52:490–508

    Article  PubMed  CAS  Google Scholar 

  • Porra RJ, Thompson WA, Kriedman PA (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta 975:384–394

    Article  CAS  Google Scholar 

  • Potters G, Pasternak TP, Guisez Y, Palme KJ, Jansen MAK (2007) Stress-induced morphogenic responses: growing out of trouble? Trends Plant Sci 12:98–105

    Article  PubMed  CAS  Google Scholar 

  • Potters G, Pasternak TP, Guisez Y, Jansen MAK (2009) Different stresses, similar morphogenic responses: integrating a plethora of pathways. Plant Cell Environ 32:158–169

    Article  PubMed  Google Scholar 

  • Prochazkova D, Sairam RK, Srivastava GC, Singh DV (2001) Oxidative stress and antioxidant activity as the basis of senescence in maize leaves. Plant Sci 161:765–771

    Article  CAS  Google Scholar 

  • Qin WM, Lan WZ, Yang X (2004) Involvement of NADPH oxidase in hydrogen peroxide accumulation by Aspergillus niger elicitor-induced Taxus chinensis cell cultures. J Plant Physiol 161:355–361

    Article  PubMed  CAS  Google Scholar 

  • Quint M, Gray WM (2006) Auxin signaling. Curr Opin Plant Biol 9:448–453

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rentel MC, Knight MR (2004) Oxidative stress-induced calcium signaling in Arabidopsis. Plant Physiol 135:1471–1479

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Renu D, Sudhir KS (1999) Glyoxalase I from Brassica juncea is a calmodulin stimulated protein. Biochim Biophys Acta 1450:460–467

    Article  Google Scholar 

  • Rivetta A, Negrini N, Cocucci M (1997) Involvement of Ca2+-calmodulin in Cd2+ toxicity during the early phases of radish (Raphanus sativus L.) seed germination. Plant Cell Environ 20:600–608

    Article  CAS  Google Scholar 

  • Rodríguez-Serrano M, Romero-Puertas MC, Pazmiño DM, Testillano PS, Risueño MC, del Río LA, Sandalio LM (2009) Cellular response of pea plants to cadmium toxicity: cross talk between reactive oxygen species, nitric oxide, and calcium. Plant Physiol 150:229–243

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Romero-Puertas MC, Corpas FJ, Rodríguez-Serrano M, Gómez M, Del Río LA, Sandalio LM (2007) Differential expression and regulation of antioxidative enzymes by cadmium in pea plants. J Plant Physiol 164:1346–1357

    Article  PubMed  CAS  Google Scholar 

  • Sandalio LM, Dalurzo HC, Gómez M, Romero-Puertas MC, del Río LA (2001) Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J Exp Bot 52:2115–2126

    PubMed  CAS  Google Scholar 

  • Sarwat M, Ahmad P, Nabi G, Hu X (2013) Ca2+ signals: the versatile decoders of environmental cues. Crit Rev Biotechnol 33:97–109

    Article  PubMed  CAS  Google Scholar 

  • Shaked-Sachray L, Weiss D, Reuveni M, Nissim-Levi A, Oren-Shamir M (2002) Increase anthocyanin accumulation in aster flowers at elevated temperature due to magnesium treatment. Physiol Plant 114:559–565

    Article  PubMed  CAS  Google Scholar 

  • Sharma P, Deswal R (2004) Detection and characterization of calcineurin-like activity in Brassica juncea and its activation by low temperature. Plant Physiol Biochem 42:579–584

    Article  PubMed  CAS  Google Scholar 

  • Sharma SS, Dietz KJ (2009) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14:43–50

    Article  PubMed  CAS  Google Scholar 

  • Shi GR, Cai QS, Liu CF, Wu L (2010) Silicon alleviates cadmium toxicity in peanut plants in relation to cadmium distribution and stimulation of antioxidative enzymes. Plant Growth Regul 61:45–52

    Article  CAS  Google Scholar 

  • Siddiqui MH, Al-Whaibi MH, Sakran AM, Basalah MO, Ali HM (2012) Effect of calcium and potassium on antioxidant system of Vicia faba L. under cadmium stress. Int J Mol Sci 13:6604–6619

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Singla B, Chugh A, Khurana JP, Khurana P (2006) An early auxin-responsive Aux/IAA gene from wheat (Triticum aestivum) is induced by epibrassinolide and differentially regulated by light and calcium. J Exp Bot 57:4059–4070

    Article  PubMed  CAS  Google Scholar 

  • Snedden WA, Fromm H (2001) Calmodulin as a versatile calcium signal transducer in plants. New Phytol 151:35–36

    Article  CAS  Google Scholar 

  • Sofo A, Vitti A, Nuzzaci M, Tataranni G, Scopa A, Vangronsveld J et al (2013) Correlation between hormonal homeostasis and morphogenic responses in Arabidopsis thaliana seedlings growing in a Cd/Cu/Zn multi-pollution context. Physiol Plant 149:487–498

    Article  CAS  Google Scholar 

  • Song WY, Zhang ZB, Shao HB, Guo XL, Cao HX, Zhao HB, Fu ZY, Hu XJ (2008) Relationship between calcium decoding elements and plant abiotic stress resistance. Int J Biol Sci 4:116–125

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Song A, Li P, Li ZJ, Fan FL, Nikolic M, Liang YC (2011) The alleviation of zinc toxicity by silicon is related to zinc transport and antioxidative reactions in rice. Plant Soil 344:319–333

    Article  CAS  Google Scholar 

  • Staswick PE, Serban B, Rowe M, Tiryaki I, Maldonado MT et al (2005) Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell 17:616–627

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Stepanova AN, Robertson-Hoyt J, Yun J, Benavente LM, Xie D-Y, Doležal K, Schlereth A, Jürgens G, Alonso JM (2008) TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell 133:177–191

    Article  PubMed  CAS  Google Scholar 

  • Sudha G, Ravishankar GA (2003) The role of calcium channels in anthocyanin production in callus cutures of Daucus carota. Plant Growth Regul 40:163–169

    Article  CAS  Google Scholar 

  • Sun P, Tian QY, Chen J, Zhang WH (2010) Aluminum induced inhibition of root elongation in Arabidopsis is mediated by ethylene and auxin. J Exp Bot 61:347–356

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Suzuki N (2005) Alleviation by calcium of cadmium-induced root growth inhibition in Arabidopsis seedlings. Plant Biotechnol 22:19–25

    Article  CAS  Google Scholar 

  • Tamás L, Bočová B, Huttová J, Liptáková Ľ, Mistrík I, Valentovičová K et al (2012) Impact of the auxin signaling inhibitor p-chlorophenoxyisobutyric acid on short-term Cd-induced hydrogen peroxide production and growth response in barley root tip. J Plant Physiol 169:1375–1381

    Article  PubMed  CAS  Google Scholar 

  • Tanaka H, Dhonukshe P, Brewer PB, Friml J (2006) Spatiotemporal asymmetric auxin distribution: a means to coordinate plant development. Cell Mol Life Sci 63:2738–2754

    Article  PubMed  CAS  Google Scholar 

  • Tao Y, Ferrer J-L, Ljung K, Pojer F, Hong F, Long JA, Li L, Moreno JE, Bowman ME, Ivans LJ et al (2008) Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell 133:164–176

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tian SK, Lu LL, Zhang J, Wang K, Brown PH, He ZL, Liang J, Yang XE (2011) Calcium protects roots of Sedum alfredii H. against cadmium-induced oxidative stress. Chemosphere 84:63–69

    Article  PubMed  CAS  Google Scholar 

  • Tognetti VB, Van Aken O, Morreel K, Vandenbroucke K, van de Cotte B, De Clercq I et al (2010) Perturbation of indole-3-butyric acid homeostasis by the UDP-glucosyltransferase UGT74E2 modulates Arabidopsis architecture and water stress tolerance. Plant Cell 22:2660–2679

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Trofimova MS, Andreev IM, Kuznetsov VV (1999) Calcium is involved in regulation of the synthesis of HSPs in suspension-cultured sugar beet cells under hyperthermia. Physiol Plant 105:67–73

    Article  CAS  Google Scholar 

  • Tsukagoshi H, Busch W, Benfey PN (2010) Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root. Cell 143:606–616

    Article  PubMed  CAS  Google Scholar 

  • Tuteja N, Sopory SK (2008) Chemical signaling under abiotic stress environment in plants. Plant Signal Behav 3:525–536

    Article  PubMed  PubMed Central  Google Scholar 

  • Ulmasov T, Murfett J, Hagen G, Guilfoyle TJ (1997) Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9:1963–1971

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Van Assche F, Clijsters H (1990) Effects of metals on enzyme activity in plants. Plant Cell Environ 13:195–206

    Article  Google Scholar 

  • Veljovic-Jovanovic SD, Noctor G, Foyer CH (2002) Are leaf hydrogen peroxide concentrations commonly overestimated? The potential influence of artefactual interference by tissue phenolics and ascorbate. Plant Physiol Biochem 40:501–507

    Article  CAS  Google Scholar 

  • Vitti A, Nuzzaci M, Scopa A, Tataranni G, Remans T et al (2013) Auxin and cytokinin metabolism and root morphological modifications in Arabidopsis thaliana seedlings infected with cucumber mosaic virus (CMV) or exposed to cadmium. Int J Mol Sci 14:6889–6902

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wan G, Najeeb U, Jilani G, Naeem MS, Zhou W (2011) Calcium invigorates the cadmium-stressed Brassica napus L. plants by strengthening their photosynthetic system. Environ Sci Pollut Res 18:1478–1486

    Article  CAS  Google Scholar 

  • Wang CQ, Song H (2009) Calcium protects Trifolium repens L. seedlings against cadmium stress. Plant Cell Rep 28:1341–1349

    Article  PubMed  CAS  Google Scholar 

  • Wang CQ, Wang BS (2007) Ca2+-CaM is involved in betacyanin accumulation induced by darkness in C3 halophyte Suaeda salsa. J Integr Plant Biol 49:1378–1385

    Article  CAS  Google Scholar 

  • Wang CQ, Zhang YF, Liu T (2005) Activity changes of CaM and Ca2+-ATPase during low temperature-induced anthocyanin accumulation in Alternanthera bettzickiana. Physiol Plant 124:260–266

    Article  CAS  Google Scholar 

  • Wang M, Zou J, Duan X, Jiang W, Liu D (2007) Cadmium accumulation and its effects on metal uptake in maize (Zea mays L.). Bioresour Technol 98:82–88

    Article  PubMed  CAS  Google Scholar 

  • Wang YN, Li KX, Li X (2009) Auxin redistribution modulates plastic development of root system architecture under salt stress in Arabidopsis thaliana. J Plant Physiol 166:1637–1645

    Article  PubMed  CAS  Google Scholar 

  • Wang WH, Yi XQ, Han AD, Liu TW, Chen J, Wu FH, Dong XJ, He JX, Pei ZM, Zheng HL (2012) Calcium-sensing receptor regulates stomatal closure through hydrogen peroxide and nitric oxide in response to extracellular calcium in Arabidopsis. J Exp Bot 63:177–190

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Woodward AW, Bartel B (2005) Auxin: regulation, action, and interaction. Ann Bot 95:707–735

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Xavier V, Fabienne L, Stephanie K, Vitrac X, Larronde F, Krisa S, Decendit A, Deffieux G (2000) Sugar sensing and Ca2+ calmodulin requirement in Vitis vinifera cells producing anthocyanins. Phytochemistry 53:659–665

    Article  Google Scholar 

  • Xiong LM, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14:165–183

    Article  CAS  Google Scholar 

  • Xu J, Yin HX, Liu XJ, Li X (2010) Salt affects plant Cd-stress responses by modulating growth and Cd accumulation. Planta 231:449–459

    Article  PubMed  CAS  Google Scholar 

  • Yang T, Poovaiah BW (2000) Molecular and biochemical evidence for the involvement of calcium/calmodulin in auxin action. J Biol Chem 275:3137–3143

    Article  PubMed  CAS  Google Scholar 

  • Yang T, Poovaiah BW (2002) A calmodulin-binding/CGCG box DNA-binding protein family involved in multiple signaling pathways in plants. J Biol Chem 277:45049–45058

    Article  PubMed  CAS  Google Scholar 

  • Yuan HM, Xu HH, Liu WC, Lu YT (2013) Copper regulates primary root elongation through PIN1-mediated auxin redistribution. Plant Cell Physiol 54:766–778

    Article  PubMed  CAS  Google Scholar 

  • Zhang FQ, Zhang HX, Wang GP, Xu LL, Shen ZG (2009) Cadmium-induced accumulation of hydrogen peroxide in the leaf apoplast of Phaseolus aureus and Vicia sativa and the roles of different antioxidant enzymes. J Hazard Mater 168:76–84

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y, Christensen SK, Fankhauser X, Cashman JR, Cohen JD, Wei-gel D, Chory J (2001) A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science 291:306–309

    Article  PubMed  CAS  Google Scholar 

  • Zhao LQ, Zhang F, Guo JK, Yang YL, Li BB, Zhang LX (2004) Nitric oxide functions as a signal in salt resistance in the calluses from two ecotypes of reed. Plant Physiol 134:849–857

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhao FY, Hu F, Zhang SY, Wang K, Zhang CR, Liu T (2013) MAPKs regulate root growth by influencing auxin signaling and cell cycle-related gene expression in cadmium-stressed rice. Environ Sci Pollut Res 20:5449–5460

    Article  CAS  Google Scholar 

  • Zhu XF, Lei GJ, Jiang T, Liu Y, Li GX, Zheng SJ (2012) Cell wall polysaccharides are involved in P-deficiency-induced Cd exclusion in Arabidopsis thaliana. Planta 236:989–997

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (31170225; 31201145), National Program on Key Basic Research Project (2012CB026105), Foundation of Science and Technology Program of Gansu Province (1208RJZA224), the National High Technology Research and Development Program (2007AA021401), and Foundation of Science and Technology Program of Gansu Province (1107RJYA005).

Author contribution

Yurong Bi was the mastermind, designed all experiments and polished the manuscript; Ping Li wrote the manuscript, carried out the quantitative reverse transcription PCR analysis, confocal microscopy, and fluorescence intensity analysis; Chengzhou Zhao measured H2O2, TBARS content, and enzyme activity; Xiaoyu Wang measured the fresh weight and the chlorophyll content and element content; Jianfeng Wang and Feng Wang carried out the determination of the IAA oxidase activity; Yongqiang Zhang and Xiaomin Wang helped in drafting the manuscript and interpretation of the results. All authors have read and approved the final manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yurong Bi.

Additional information

Handling Editor: Bhumi Nath Tripathi

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(DOC 31 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Zhao, C., Zhang, Y. et al. Calcium alleviates cadmium-induced inhibition on root growth by maintaining auxin homeostasis in Arabidopsis seedlings. Protoplasma 253, 185–200 (2016). https://doi.org/10.1007/s00709-015-0810-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-015-0810-9

Keywords

Navigation